from __future__ import absolute_import, division, print_function, unicode_literals import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon __all__ = ["MakePseGt"] class MakePseGt(object): def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs): self.kernel_num = kernel_num self.min_shrink_ratio = min_shrink_ratio self.size = size def __call__(self, data): image = data["image"] text_polys = data["polys"] ignore_tags = data["ignore_tags"] h, w, _ = image.shape short_edge = min(h, w) if short_edge < self.size: # keep short_size >= self.size scale = self.size / short_edge image = cv2.resize(image, dsize=None, fx=scale, fy=scale) text_polys *= scale gt_kernels = [] for i in range(1, self.kernel_num + 1): # s1->sn, from big to small rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1) * i text_kernel, ignore_tags = self.generate_kernel( image.shape[0:2], rate, text_polys, ignore_tags ) gt_kernels.append(text_kernel) training_mask = np.ones(image.shape[0:2], dtype="uint8") for i in range(text_polys.shape[0]): if ignore_tags[i]: cv2.fillPoly( training_mask, text_polys[i].astype(np.int32)[np.newaxis, :, :], 0 ) gt_kernels = np.array(gt_kernels) gt_kernels[gt_kernels > 0] = 1 data["image"] = image data["polys"] = text_polys data["gt_kernels"] = gt_kernels[0:] data["gt_text"] = gt_kernels[0] data["mask"] = training_mask.astype("float32") return data def generate_kernel(self, img_size, shrink_ratio, text_polys, ignore_tags=None): """ Refer to part of the code: https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/base_textdet_targets.py """ h, w = img_size text_kernel = np.zeros((h, w), dtype=np.float32) for i, poly in enumerate(text_polys): polygon = Polygon(poly) distance = ( polygon.area * (1 - shrink_ratio * shrink_ratio) / (polygon.length + 1e-6) ) subject = [tuple(l) for l in poly] pco = pyclipper.PyclipperOffset() pco.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrinked = np.array(pco.Execute(-distance)) if len(shrinked) == 0 or shrinked.size == 0: if ignore_tags is not None: ignore_tags[i] = True continue try: shrinked = np.array(shrinked[0]).reshape(-1, 2) except: if ignore_tags is not None: ignore_tags[i] = True continue cv2.fillPoly(text_kernel, [shrinked.astype(np.int32)], i + 1) return text_kernel, ignore_tags