import gradio as gr from easyocr import Reader from PIL import Image import io import json import csv import openai import ast import os from deta import Deta ###################### import requests import json import os import openai class OpenAI_API: def __init__(self): self.openai_api_key = '' def single_request(self, address_text): openai.api_type = "azure" openai.api_base = "https://damlaopenai.openai.azure.com/" openai.api_version = "2022-12-01" openai.api_key = os.getenv("API_KEY") response = openai.Completion.create( engine="Davinci-003", prompt=address_text, temperature=0.,#9, max_tokens=300, top_p=1.0, # n=1, # logprobs=0, # echo=False, # stop=None, frequency_penalty=0, presence_penalty=0, stop=["\n"], best_of=1) return response ######################## openai.api_key = os.getenv('API_KEY') reader = Reader(["tr"]) def get_parsed_address(input_img): address_full_text = get_text(input_img) return openai_response(address_full_text) def preprocess_img(inp_image): gray = cv2.cvtColor(inp_image, cv2.COLOR_BGR2GRAY) gray_img = cv2.bitwise_not(gray) return gray_img def get_text(input_img): result = reader.readtext(input_img, detail=0) return " ".join(result) def save_csv(mahalle, il, sokak, apartman): adres_full = [mahalle, il, sokak, apartman] with open("adress_book.csv", "a", encoding="utf-8") as f: write = csv.writer(f) write.writerow(adres_full) return adres_full def get_json(mahalle, il, sokak, apartman): adres = {"mahalle": mahalle, "il": il, "sokak": sokak, "apartman": apartman} dump = json.dumps(adres, indent=4, ensure_ascii=False) return dump def write_db(data_dict): # 2) initialize with a project key deta_key = os.getenv('DETA_KEY') deta = Deta(deta_key) # 3) create and use as many DBs as you want! users = deta.Base("deprem-ocr") users.insert(data_dict) def text_dict(input): eval_result = ast.literal_eval(input) write_db(eval_result) return ( str(eval_result['city']), str(eval_result['distinct']), str(eval_result['neighbourhood']), str(eval_result['street']), str(eval_result['address']), str(eval_result['tel']), str(eval_result['name_surname']), str(eval_result['no']), ) def openai_response(ocr_input): prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from plain text input and especially from emergency text that carries address information, your inputs can be text of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it to only extract keys that are shared as an example in the examples section, if a key value is not found in the text input, then it should be ignored. Have only city, distinct, neighbourhood, street, no, tel, name_surname, address Examples: Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}} Input: {ocr_input} Output: """ openai_client = OpenAI_API() response = openai_client.single_request(prompt) resp = response["choices"][0]["text"] print(resp) resp = eval(resp.replace("'{", "{").replace("}'", "}")) resp["input"] = ocr_input dict_keys = [ 'city', 'distinct', 'neighbourhood', 'street', 'no', 'tel', 'name_surname', 'address', 'input', ] for key in dict_keys: if key not in resp.keys(): resp[key] = '' return resp def ner_response(ocr_input): API_URL = "https://api-inference.huggingface.co/models/deprem-ml/deprem-ner" headers = {"Authorization": "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": ocr_input, }) return output with gr.Blocks() as demo: gr.Markdown( """ # Enkaz Bildirme Uygulaması """) gr.Markdown("Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın.") with gr.Row(): img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇") ocr_result = gr.Textbox(label="Metin yükleyin 👇 ") open_api_text = gr.Textbox(label="Tam Adres") submit_button = gr.Button(label="Yükle") with gr.Column(): with gr.Row(): city = gr.Textbox(label="İl") distinct = gr.Textbox(label="İlçe") with gr.Row(): neighbourhood = gr.Textbox(label="Mahalle") street = gr.Textbox(label="Sokak/Cadde/Bulvar") with gr.Row(): tel = gr.Textbox(label="Telefon") with gr.Row(): name_surname = gr.Textbox(label="İsim Soyisim") address = gr.Textbox(label="Adres") with gr.Row(): no = gr.Textbox(label="Kapı No") submit_button.click(get_parsed_address, inputs = img_area, outputs = open_api_text, api_name="upload_image") ocr_result.change(openai_response, ocr_result, open_api_text, api_name="upload-text") open_api_text.change(text_dict, open_api_text, [city, distinct, neighbourhood, street, address, tel, name_surname, no]) if __name__ == "__main__": demo.launch()