import numpy as np class WarpMLS: def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.0): self.src = src self.src_pts = src_pts self.dst_pts = dst_pts self.pt_count = len(self.dst_pts) self.dst_w = dst_w self.dst_h = dst_h self.trans_ratio = trans_ratio self.grid_size = 100 self.rdx = np.zeros((self.dst_h, self.dst_w)) self.rdy = np.zeros((self.dst_h, self.dst_w)) @staticmethod def __bilinear_interp(x, y, v11, v12, v21, v22): return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 * (1 - y) + v22 * y) * x def generate(self): self.calc_delta() return self.gen_img() def calc_delta(self): w = np.zeros(self.pt_count, dtype=np.float32) if self.pt_count < 2: return i = 0 while 1: if self.dst_w <= i < self.dst_w + self.grid_size - 1: i = self.dst_w - 1 elif i >= self.dst_w: break j = 0 while 1: if self.dst_h <= j < self.dst_h + self.grid_size - 1: j = self.dst_h - 1 elif j >= self.dst_h: break sw = 0 swp = np.zeros(2, dtype=np.float32) swq = np.zeros(2, dtype=np.float32) new_pt = np.zeros(2, dtype=np.float32) cur_pt = np.array([i, j], dtype=np.float32) k = 0 for k in range(self.pt_count): if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]: break w[k] = 1.0 / ( (i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) + (j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1]) ) sw += w[k] swp = swp + w[k] * np.array(self.dst_pts[k]) swq = swq + w[k] * np.array(self.src_pts[k]) if k == self.pt_count - 1: pstar = 1 / sw * swp qstar = 1 / sw * swq miu_s = 0 for k in range(self.pt_count): if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]: continue pt_i = self.dst_pts[k] - pstar miu_s += w[k] * np.sum(pt_i * pt_i) cur_pt -= pstar cur_pt_j = np.array([-cur_pt[1], cur_pt[0]]) for k in range(self.pt_count): if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]: continue pt_i = self.dst_pts[k] - pstar pt_j = np.array([-pt_i[1], pt_i[0]]) tmp_pt = np.zeros(2, dtype=np.float32) tmp_pt[0] = ( np.sum(pt_i * cur_pt) * self.src_pts[k][0] - np.sum(pt_j * cur_pt) * self.src_pts[k][1] ) tmp_pt[1] = ( -np.sum(pt_i * cur_pt_j) * self.src_pts[k][0] + np.sum(pt_j * cur_pt_j) * self.src_pts[k][1] ) tmp_pt *= w[k] / miu_s new_pt += tmp_pt new_pt += qstar else: new_pt = self.src_pts[k] self.rdx[j, i] = new_pt[0] - i self.rdy[j, i] = new_pt[1] - j j += self.grid_size i += self.grid_size def gen_img(self): src_h, src_w = self.src.shape[:2] dst = np.zeros_like(self.src, dtype=np.float32) for i in np.arange(0, self.dst_h, self.grid_size): for j in np.arange(0, self.dst_w, self.grid_size): ni = i + self.grid_size nj = j + self.grid_size w = h = self.grid_size if ni >= self.dst_h: ni = self.dst_h - 1 h = ni - i + 1 if nj >= self.dst_w: nj = self.dst_w - 1 w = nj - j + 1 di = np.reshape(np.arange(h), (-1, 1)) dj = np.reshape(np.arange(w), (1, -1)) delta_x = self.__bilinear_interp( di / h, dj / w, self.rdx[i, j], self.rdx[i, nj], self.rdx[ni, j], self.rdx[ni, nj], ) delta_y = self.__bilinear_interp( di / h, dj / w, self.rdy[i, j], self.rdy[i, nj], self.rdy[ni, j], self.rdy[ni, nj], ) nx = j + dj + delta_x * self.trans_ratio ny = i + di + delta_y * self.trans_ratio nx = np.clip(nx, 0, src_w - 1) ny = np.clip(ny, 0, src_h - 1) nxi = np.array(np.floor(nx), dtype=np.int32) nyi = np.array(np.floor(ny), dtype=np.int32) nxi1 = np.array(np.ceil(nx), dtype=np.int32) nyi1 = np.array(np.ceil(ny), dtype=np.int32) if len(self.src.shape) == 3: x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3)) y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3)) else: x = ny - nyi y = nx - nxi dst[i : i + h, j : j + w] = self.__bilinear_interp( x, y, self.src[nyi, nxi], self.src[nyi, nxi1], self.src[nyi1, nxi], self.src[nyi1, nxi1], ) dst = np.clip(dst, 0, 255) dst = np.array(dst, dtype=np.uint8) return dst