deprem-ocr / ocr /ppocr /data /imaug /randaugment.py
Goodsea's picture
paddleocr
fc8c192
raw
history blame
4.7 kB
from __future__ import absolute_import, division, print_function, unicode_literals
import random
import numpy as np
import six
from PIL import Image, ImageEnhance, ImageOps
class RawRandAugment(object):
def __init__(self, num_layers=2, magnitude=5, fillcolor=(128, 128, 128), **kwargs):
self.num_layers = num_layers
self.magnitude = magnitude
self.max_level = 10
abso_level = self.magnitude / self.max_level
self.level_map = {
"shearX": 0.3 * abso_level,
"shearY": 0.3 * abso_level,
"translateX": 150.0 / 331 * abso_level,
"translateY": 150.0 / 331 * abso_level,
"rotate": 30 * abso_level,
"color": 0.9 * abso_level,
"posterize": int(4.0 * abso_level),
"solarize": 256.0 * abso_level,
"contrast": 0.9 * abso_level,
"sharpness": 0.9 * abso_level,
"brightness": 0.9 * abso_level,
"autocontrast": 0,
"equalize": 0,
"invert": 0,
}
# from https://stackoverflow.com/questions/5252170/
# specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
def rotate_with_fill(img, magnitude):
rot = img.convert("RGBA").rotate(magnitude)
return Image.composite(
rot, Image.new("RGBA", rot.size, (128,) * 4), rot
).convert(img.mode)
rnd_ch_op = random.choice
self.func = {
"shearX": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
Image.BICUBIC,
fillcolor=fillcolor,
),
"shearY": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
Image.BICUBIC,
fillcolor=fillcolor,
),
"translateX": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0),
fillcolor=fillcolor,
),
"translateY": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])),
fillcolor=fillcolor,
),
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])
),
"posterize": lambda img, magnitude: ImageOps.posterize(img, magnitude),
"solarize": lambda img, magnitude: ImageOps.solarize(img, magnitude),
"contrast": lambda img, magnitude: ImageEnhance.Contrast(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])
),
"sharpness": lambda img, magnitude: ImageEnhance.Sharpness(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])
),
"brightness": lambda img, magnitude: ImageEnhance.Brightness(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])
),
"autocontrast": lambda img, magnitude: ImageOps.autocontrast(img),
"equalize": lambda img, magnitude: ImageOps.equalize(img),
"invert": lambda img, magnitude: ImageOps.invert(img),
}
def __call__(self, img):
avaiable_op_names = list(self.level_map.keys())
for layer_num in range(self.num_layers):
op_name = np.random.choice(avaiable_op_names)
img = self.func[op_name](img, self.level_map[op_name])
return img
class RandAugment(RawRandAugment):
"""RandAugment wrapper to auto fit different img types"""
def __init__(self, prob=0.5, *args, **kwargs):
self.prob = prob
if six.PY2:
super(RandAugment, self).__init__(*args, **kwargs)
else:
super().__init__(*args, **kwargs)
def __call__(self, data):
if np.random.rand() > self.prob:
return data
img = data["image"]
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
if six.PY2:
img = super(RandAugment, self).__call__(img)
else:
img = super().__call__(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
data["image"] = img
return data