Spaces:
Running
Running
Create data_processor.py
Browse files- data_processor.py +140 -0
data_processor.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from typing import List, Dict, Any
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
class DataProcessor:
|
8 |
+
def __init__(self):
|
9 |
+
self.data = None
|
10 |
+
self.numeric_columns = []
|
11 |
+
self.categorical_columns = []
|
12 |
+
self.date_columns = []
|
13 |
+
|
14 |
+
def load_data(self, file) -> bool:
|
15 |
+
"""Load and validate CSV data"""
|
16 |
+
try:
|
17 |
+
self.data = pd.read_csv(file)
|
18 |
+
self._classify_columns()
|
19 |
+
return True
|
20 |
+
except Exception as e:
|
21 |
+
st.error(f"Error loading data: {str(e)}")
|
22 |
+
return False
|
23 |
+
|
24 |
+
def _classify_columns(self):
|
25 |
+
"""Classify columns into numeric, categorical, and date types"""
|
26 |
+
for col in self.data.columns:
|
27 |
+
if pd.api.types.is_numeric_dtype(self.data[col]):
|
28 |
+
self.numeric_columns.append(col)
|
29 |
+
elif pd.api.types.is_datetime64_any_dtype(self.data[col]):
|
30 |
+
self.date_columns.append(col)
|
31 |
+
else:
|
32 |
+
try:
|
33 |
+
pd.to_datetime(self.data[col])
|
34 |
+
self.date_columns.append(col)
|
35 |
+
except:
|
36 |
+
self.categorical_columns.append(col)
|
37 |
+
|
38 |
+
def get_basic_stats(self) -> Dict[str, Any]:
|
39 |
+
"""Calculate basic statistics for numeric columns"""
|
40 |
+
if self.data is None:
|
41 |
+
return {}
|
42 |
+
|
43 |
+
stats = {
|
44 |
+
'summary': self.data[self.numeric_columns].describe(),
|
45 |
+
'missing_values': self.data.isnull().sum(),
|
46 |
+
'row_count': len(self.data),
|
47 |
+
'column_count': len(self.data.columns)
|
48 |
+
}
|
49 |
+
return stats
|
50 |
+
|
51 |
+
def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure:
|
52 |
+
"""Create different types of visualizations based on user selection"""
|
53 |
+
if chart_type == "Line Plot":
|
54 |
+
fig = px.line(self.data, x=x_col, y=y_col, color=color_col)
|
55 |
+
elif chart_type == "Bar Plot":
|
56 |
+
fig = px.bar(self.data, x=x_col, y=y_col, color=color_col)
|
57 |
+
elif chart_type == "Scatter Plot":
|
58 |
+
fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col)
|
59 |
+
elif chart_type == "Box Plot":
|
60 |
+
fig = px.box(self.data, x=x_col, y=y_col, color=color_col)
|
61 |
+
else:
|
62 |
+
fig = px.histogram(self.data, x=x_col, color=color_col)
|
63 |
+
|
64 |
+
return fig
|
65 |
+
|
66 |
+
def calculate_metrics(self, column: str) -> Dict[str, float]:
|
67 |
+
"""Calculate key metrics for a selected column"""
|
68 |
+
if column not in self.numeric_columns:
|
69 |
+
return {}
|
70 |
+
|
71 |
+
metrics = {
|
72 |
+
'mean': self.data[column].mean(),
|
73 |
+
'median': self.data[column].median(),
|
74 |
+
'std': self.data[column].std(),
|
75 |
+
'min': self.data[column].min(),
|
76 |
+
'max': self.data[column].max(),
|
77 |
+
'skew': self.data[column].skew()
|
78 |
+
}
|
79 |
+
return metrics
|
80 |
+
|
81 |
+
def render_analytics_page():
|
82 |
+
st.title("Data Analytics Dashboard")
|
83 |
+
|
84 |
+
# Initialize data processor
|
85 |
+
processor = DataProcessor()
|
86 |
+
|
87 |
+
# File upload
|
88 |
+
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
|
89 |
+
if uploaded_file is not None:
|
90 |
+
if processor.load_data(uploaded_file):
|
91 |
+
st.success("Data loaded successfully!")
|
92 |
+
|
93 |
+
# Data Preview
|
94 |
+
st.subheader("Data Preview")
|
95 |
+
st.dataframe(processor.data.head())
|
96 |
+
|
97 |
+
# Basic Stats
|
98 |
+
st.subheader("Basic Statistics")
|
99 |
+
stats = processor.get_basic_stats()
|
100 |
+
st.write(stats['summary'])
|
101 |
+
|
102 |
+
# Visualization Section
|
103 |
+
st.subheader("Create Visualization")
|
104 |
+
col1, col2, col3 = st.columns(3)
|
105 |
+
|
106 |
+
with col1:
|
107 |
+
chart_type = st.selectbox(
|
108 |
+
"Select Chart Type",
|
109 |
+
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
|
110 |
+
)
|
111 |
+
|
112 |
+
with col2:
|
113 |
+
x_col = st.selectbox("Select X-axis", processor.data.columns)
|
114 |
+
|
115 |
+
with col3:
|
116 |
+
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
|
117 |
+
|
118 |
+
color_col = st.selectbox("Select Color Variable (optional)",
|
119 |
+
['None'] + processor.categorical_columns)
|
120 |
+
color_col = None if color_col == 'None' else color_col
|
121 |
+
|
122 |
+
# Generate and display visualization
|
123 |
+
fig = processor.create_visualization(
|
124 |
+
chart_type,
|
125 |
+
x_col,
|
126 |
+
y_col if y_col else x_col,
|
127 |
+
color_col
|
128 |
+
)
|
129 |
+
st.plotly_chart(fig, use_container_width=True)
|
130 |
+
|
131 |
+
# Metrics Calculator
|
132 |
+
st.subheader("Metric Calculator")
|
133 |
+
metric_col = st.selectbox("Select column for metrics", processor.numeric_columns)
|
134 |
+
metrics = processor.calculate_metrics(metric_col)
|
135 |
+
|
136 |
+
# Display metrics in columns
|
137 |
+
cols = st.columns(3)
|
138 |
+
for i, (metric, value) in enumerate(metrics.items()):
|
139 |
+
with cols[i % 3]:
|
140 |
+
st.metric(label=metric.capitalize(), value=f"{value:.2f}")
|