|
import os |
|
import torch |
|
import gradio as gr |
|
from textwrap import fill |
|
from langchain.prompts.chat import ( |
|
ChatPromptTemplate, |
|
HumanMessagePromptTemplate, |
|
SystemMessagePromptTemplate, |
|
) |
|
from langchain import PromptTemplate |
|
from langchain import HuggingFacePipeline |
|
from langchain.vectorstores import Chroma |
|
from langchain.schema import AIMessage, HumanMessage |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.document_loaders import UnstructuredMarkdownLoader, UnstructuredURLLoader |
|
from langchain.chains import LLMChain, SimpleSequentialChain, RetrievalQA, ConversationalRetrievalChain |
|
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline |
|
import warnings |
|
from huggingface_hub import login |
|
|
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
huggingface_token = os.getenv('huggingface_token') |
|
login(huggingface_token) |
|
|
|
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3" |
|
EMBEDDING_MODEL = 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2' |
|
|
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
quantization_config=quantization_config |
|
) |
|
|
|
generation_config = GenerationConfig.from_pretrained(MODEL_NAME) |
|
generation_config.max_new_tokens = 1024 |
|
generation_config.temperature = 0.0001 |
|
generation_config.top_p = 0.95 |
|
generation_config.do_sample = True |
|
generation_config.repetition_penalty = 1.15 |
|
|
|
llm = HuggingFacePipeline(pipeline=pipeline) |
|
embeddings = HuggingFaceEmbeddings(model_name = EMBEDDING_MODEL) |
|
|
|
urls = [ |
|
"https://www.boe.es/diario_boe/txt.php?id=BOE-A-2024-9523" |
|
] |
|
|
|
loader = UnstructuredURLLoader(urls=urls) |
|
documents = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
texts_chunks = text_splitter.split_documents(documents) |
|
|
|
db = Chroma.from_documents(texts_chunks, embeddings, persist_directory="db") |
|
|
|
template = """Act as an lawyer assistant manager expert. Use the following information to answer the question at the end. |
|
'You must always answer in Spanish' If you do not know the answer reply with 'I am sorry, I dont have enough information'. |
|
Chat History |
|
{chat_history} |
|
Follow Up Input: {question} |
|
Standalone question: |
|
""" |
|
|
|
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(template) |
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
|
|
llm_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=db.as_retriever(search_kwargs={"k": 2}), |
|
memory=memory, |
|
condense_question_prompt=CUSTOM_QUESTION_PROMPT, |
|
) |
|
|
|
def querying(query, history): |
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=False) |
|
|
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=db.as_retriever(search_kwargs={"k": 2}), |
|
memory=memory, |
|
condense_question_prompt=CUSTOM_QUESTION_PROMPT, |
|
) |
|
|
|
result = qa_chain({"question": query}) |
|
return result["answer"].strip() |
|
|
|
iface = gr.ChatInterface( |
|
fn = querying, |
|
chatbot=gr.Chatbot(height=600), |
|
textbox=gr.Textbox(placeholder="Cuantos segmentos hay y en que consisten?", container=False, scale=7), |
|
title="LawyerBot", |
|
theme="soft", |
|
examples=["¿Cuantos segmentos hay?", |
|
"¿Que importe del bono digital corresponde a cada uno de los 5 segmentos?", |
|
"¿Cuál es el importe de la ayuda para el segmento III en canto a dispositivo hardware?", |
|
"Si tengo una microempresa de 2 empleado, ¿qué importe del bono digital me corresponde?", |
|
"¿Qué nuevos segmentos de beneficiarios se han introducido?"], |
|
cache_examples=True, |
|
retry_btn="Repetir", |
|
undo_btn="Deshacer", |
|
clear_btn="Borrar", |
|
submit_btn="Enviar" |
|
) |
|
|
|
iface.launch(share=True) |