import tensorflow as tf from tensorflow.keras.applications import EfficientNetB0 efficient_net = EfficientNetB0(weights='imagenet',include_top=False,input_shape=(150, 150, 3)) model = efficient_net.output model = tf.keras.layers.GlobalAveragePooling2D()(model) model = tf.keras.layers.Dense(64, activation='relu')(model) model = tf.keras.layers.Dropout(rate=0.1)(model) model = tf.keras.layers.Dense(32, activation='relu')(model) model = tf.keras.layers.Dropout(rate=0.1)(model) model = tf.keras.layers.Dense(2, activation='sigmoid')(model) model = tf.keras.models.Model(inputs=efficient_net.input, outputs=model) model.compile(loss='binary_crossentropy',optimizer =tf.keras.optimizers.legacy.Adam(), metrics= ['accuracy']) model.load_weights('./my_checkpoint') import gradio as gr def cardiomegaly(img): img = img.reshape(1, 150, 150, 3) prediction = model.predict(img).tolist()[0] class_names = ["False", "True"] return {class_names[i]: prediction[i] for i in range(2)} #set the user uploaded image as the input array #match same shape as the input shape in the model im = gr.inputs.Image(shape=(150, 150), image_mode='RGB', invert_colors=False, source="upload") #setup the interface iface = gr.Interface( fn = cardiomegaly, inputs = gr.Image(shape=(150, 150)), outputs = gr.outputs.Label(), ) iface.launch(share=True)