demethantas commited on
Commit
e07b084
1 Parent(s): 566b91b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -22
app.py CHANGED
@@ -3,7 +3,6 @@
3
 
4
  # # Araba Fiyatı Tahmin Eden Model ve Deployment
5
 
6
-
7
  #import libraries
8
  import pandas as pd
9
  from sklearn.model_selection import train_test_split
@@ -13,36 +12,20 @@ from sklearn.pipeline import Pipeline
13
  from sklearn.compose import ColumnTransformer
14
  from sklearn.preprocessing import StandardScaler,OneHotEncoder
15
 
16
-
17
-
18
  #Load data
19
  df=pd.read_excel('cars.xls')
20
 
21
-
22
-
23
-
24
-
25
-
26
-
27
  X=df.drop('Price',axis=1)
28
  y=df[['Price']]
29
 
30
-
31
-
32
  X_train,X_test,y_train,y_test=train_test_split(X,y,
33
  test_size=0.2,
34
  random_state=42)
35
 
36
-
37
-
38
-
39
  preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
40
  ['Mileage','Cylinder','Liter','Doors']),
41
  ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
42
 
43
-
44
-
45
-
46
  model=LinearRegression()
47
  pipe=Pipeline(steps=[('preprocessor',preproccer),
48
  ('model',model)])
@@ -68,7 +51,7 @@ def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,lea
68
  })
69
  prediction=pipe.predict(input_data)[0]
70
  return prediction
71
- st.title("Araba Fiyatı Tahmin :red_car: @drmurataltun")
72
  st.write("Arabanın özelliklerini seçin")
73
  make=st.selectbox("Marka",df['Make'].unique())
74
  model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
@@ -85,7 +68,3 @@ if st.button("Tahmin"):
85
  pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
86
 
87
  st.write("Predicted Price :red_car: $",round(pred[0],2))
88
-
89
-
90
-
91
-
 
3
 
4
  # # Araba Fiyatı Tahmin Eden Model ve Deployment
5
 
 
6
  #import libraries
7
  import pandas as pd
8
  from sklearn.model_selection import train_test_split
 
12
  from sklearn.compose import ColumnTransformer
13
  from sklearn.preprocessing import StandardScaler,OneHotEncoder
14
 
 
 
15
  #Load data
16
  df=pd.read_excel('cars.xls')
17
 
 
 
 
 
 
 
18
  X=df.drop('Price',axis=1)
19
  y=df[['Price']]
20
 
 
 
21
  X_train,X_test,y_train,y_test=train_test_split(X,y,
22
  test_size=0.2,
23
  random_state=42)
24
 
 
 
 
25
  preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
26
  ['Mileage','Cylinder','Liter','Doors']),
27
  ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
28
 
 
 
 
29
  model=LinearRegression()
30
  pipe=Pipeline(steps=[('preprocessor',preproccer),
31
  ('model',model)])
 
51
  })
52
  prediction=pipe.predict(input_data)[0]
53
  return prediction
54
+ st.title("Araba Fiyatı Tahmin :red_car: demethantas")
55
  st.write("Arabanın özelliklerini seçin")
56
  make=st.selectbox("Marka",df['Make'].unique())
57
  model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
 
68
  pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
69
 
70
  st.write("Predicted Price :red_car: $",round(pred[0],2))