Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024 DeepSeek. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
from dataclasses import dataclass | |
from typing import Dict, Tuple, List, Literal, Optional | |
import math | |
import torch | |
from torch.nn.utils.rnn import pad_sequence | |
import torchvision.transforms as T | |
from transformers import LlamaTokenizerFast | |
from transformers.processing_utils import ProcessorMixin | |
from PIL import Image, ImageOps | |
from .conversation import get_conv_template | |
def select_best_resolution(image_size, candidate_resolutions): | |
# used for cropping | |
original_width, original_height = image_size | |
best_fit = None | |
max_effective_resolution = 0 | |
min_wasted_resolution = float("inf") | |
for width, height in candidate_resolutions: | |
scale = min(width / original_width, height / original_height) | |
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) | |
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) | |
wasted_resolution = (width * height) - effective_resolution | |
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): | |
max_effective_resolution = effective_resolution | |
min_wasted_resolution = wasted_resolution | |
best_fit = (width, height) | |
return best_fit | |
class DictOutput(object): | |
def keys(self): | |
return self.__dict__.keys() | |
def __getitem__(self, item): | |
return self.__dict__[item] | |
def __setitem__(self, key, value): | |
self.__dict__[key] = value | |
# 对于inference sample也可以维护input_ids,反正最后不会用到 | |
class VLChatProcessorOutput(DictOutput): | |
sft_format: str | |
input_ids: torch.LongTensor | |
target_ids: torch.LongTensor | |
images: torch.Tensor | |
images_seq_mask: torch.BoolTensor | |
images_spatial_crop: torch.LongTensor | |
num_image_tokens: List[int] | |
def __len__(self): | |
return len(self.input_ids) | |
class BatchCollateOutput(DictOutput): | |
sft_format: List[str] | |
input_ids: torch.LongTensor | |
labels: torch.LongTensor | |
images: torch.Tensor | |
attention_mask: torch.Tensor | |
images_seq_mask: torch.BoolTensor | |
images_spatial_crop: torch.LongTensor | |
seq_lens: List[int] | |
def to(self, device, dtype=torch.bfloat16): | |
self.input_ids = self.input_ids.to(device) | |
self.labels = self.labels.to(device) | |
self.attention_mask = self.attention_mask.to(device) | |
self.images_seq_mask = self.images_seq_mask.to(device) | |
self.images_spatial_crop = self.images_spatial_crop.to(device) | |
self.images = self.images.to(device=device, dtype=dtype) | |
return self | |
class ImageTransform(object): | |
def __init__( | |
self, | |
mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5), | |
std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5), | |
normalize: bool = True | |
): | |
self.mean = mean | |
self.std = std | |
self.normalize = normalize | |
transform_pipelines = [ | |
T.ToTensor() | |
] | |
if normalize: | |
transform_pipelines.append(T.Normalize(mean, std)) | |
self.transform = T.Compose(transform_pipelines) | |
def __call__(self, pil_img: Image.Image): | |
x = self.transform(pil_img) | |
return x | |
class DeepseekVLV2Processor(ProcessorMixin): | |
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | |
attributes = ["tokenizer"] | |
def __init__( | |
self, | |
tokenizer: LlamaTokenizerFast, | |
candidate_resolutions: Tuple[Tuple[int, int]], | |
patch_size: int, | |
downsample_ratio: int, | |
image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), | |
image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5), | |
normalize: bool = True, | |
image_token: str = "<image>", | |
pad_token: str = "<|▁pad▁|>", | |
add_special_token: bool = False, | |
sft_format: str = "deepseek", | |
mask_prompt: bool = True, | |
ignore_id: int = -100, | |
**kwargs, | |
): | |
self.candidate_resolutions = candidate_resolutions | |
self.image_size = candidate_resolutions[0][0] | |
self.patch_size = patch_size | |
self.image_mean = image_mean | |
self.image_std = image_std | |
self.normalize = normalize | |
self.downsample_ratio = downsample_ratio | |
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize) | |
self.tokenizer = tokenizer | |
self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference | |
# add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id' | |
if tokenizer.pad_token is None: | |
self.tokenizer.add_special_tokens({'pad_token': pad_token}) | |
print(f"Add pad token = ['{pad_token}'] to the tokenizer\n" | |
f"{pad_token}:{tokenizer.encode(pad_token, add_special_tokens=False)[0]}") | |
# add image token | |
image_token_id = self.tokenizer.vocab.get(image_token) | |
if image_token_id is None: | |
special_tokens = [image_token] | |
special_tokens_dict = {"additional_special_tokens": special_tokens} | |
self.tokenizer.add_special_tokens(special_tokens_dict) | |
self.image_token_id = self.tokenizer.vocab.get(image_token) | |
print(f"Add image token = ['{image_token}'] to the tokenizer\n" | |
f"{image_token}:{tokenizer.encode(image_token, add_special_tokens=False)[0]}") | |
# add five special tokens for grounding-related tasks | |
# <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|> | |
special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] | |
special_tokens_dict = {"additional_special_tokens": special_tokens} | |
self.tokenizer.add_special_tokens(special_tokens_dict) | |
print(f"Add grounding-related tokens = {special_tokens} to the tokenizer with input_ids\n" | |
f"<|ref|>:{tokenizer.encode('<|ref|>', add_special_tokens=False)[0]}\n" | |
f"<|/ref|>:{tokenizer.encode('<|/ref|>', add_special_tokens=False)[0]}\n" | |
f"<|det|>:{tokenizer.encode('<|det|>', add_special_tokens=False)[0]}\n" | |
f"<|/det|>:{tokenizer.encode('<|/det|>', add_special_tokens=False)[0]}\n" | |
f"<|grounding|>:{tokenizer.encode('<|grounding|>', add_special_tokens=False)[0]}") | |
# add special tokens for SFT data | |
special_tokens = ["<|User|>", "<|Assistant|>"] | |
special_tokens_dict = {"additional_special_tokens": special_tokens} | |
self.tokenizer.add_special_tokens(special_tokens_dict) | |
print(f"Add chat tokens = {special_tokens} to the tokenizer with input_ids\n" | |
f"<|User|>:{tokenizer.encode('<|User|>', add_special_tokens=False)[0]}\n" | |
f"<|Assistant|>:{tokenizer.encode('<|Assistant|>', add_special_tokens=False)[0]}\n") | |
self.image_token = image_token | |
self.pad_token = pad_token | |
self.add_special_token = add_special_token | |
self.sft_format = sft_format | |
self.mask_prompt = mask_prompt | |
self.ignore_id = ignore_id | |
super().__init__( | |
tokenizer, | |
**kwargs, | |
) | |
def new_chat_template(self): | |
conv = get_conv_template(self.sft_format) | |
return conv | |
def format_messages( | |
self, | |
conversations: List[Dict[str, str]], | |
sft_format: str = "deepseek", | |
system_prompt: str = "", | |
): | |
""" | |
Applies the SFT template to conversation. | |
Args: | |
conversations (List[Dict]): A List of messages. | |
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek". | |
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "". | |
Returns: | |
sft_prompt (str): The formatted text. | |
""" | |
conv = get_conv_template(sft_format) | |
conv.set_system_message(system_prompt) | |
for message in conversations: | |
conv.append_message(message["role"], message["content"].strip()) | |
sft_prompt = conv.get_prompt().strip() | |
return sft_prompt | |
def format_messages_v2(self, messages, pil_images, systems=None): | |
"""play the role of format_messages_v2 and get_images_info in the last version""" | |
tokenized_data = [] | |
masked_tokenized_data = [] # labels | |
images_list = [] | |
images_seq_mask = [] | |
images_spatial_crop = [] | |
num_image_tokens = [] | |
image_index = 0 | |
conv = get_conv_template(self.sft_format) | |
conv_system_message = conv.system_message | |
for idx, message in enumerate(messages): | |
if idx == 0: | |
tokenized_data += [self.bos_id] | |
masked_tokenized_data += [self.bos_id] | |
images_seq_mask += [False] | |
conv.system_message = conv_system_message | |
else: | |
conv.system_message = '' | |
if message['role'] == conv.roles[0] or message['role'] == "user": | |
conv.reset_message() | |
conv.append_message(conv.roles[0], str(message['content']).strip()) | |
conv.append_message(conv.roles[1], '') | |
formatted_question = conv.get_prompt() | |
tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images( | |
formatted_question, | |
pil_images[image_index: image_index + formatted_question.count(self.image_token)], | |
bos=False, | |
eos=False, | |
cropping=len(pil_images) <= 2 | |
) | |
image_index += formatted_question.count(self.image_token) | |
tokenized_data += tokenized_str | |
if self.mask_prompt: | |
masked_tokenized_data += [self.ignore_id] * len(tokenized_str) | |
else: | |
masked_tokenized_data += tokenized_str | |
images_list += images | |
images_seq_mask += seq_mask | |
images_spatial_crop += spatial_crop | |
num_image_tokens += n_image_tokens | |
elif message['role'] == conv.roles[1] or message['role'] == "assistant": | |
formatted_answer = message['content'].strip() | |
assert formatted_answer.count( | |
self.image_token) == 0, f"there should be no {self.image_token} in the assistant's reply, but got {messages}" | |
tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images( | |
formatted_answer, | |
[], | |
bos=False, | |
eos=True, | |
cropping=len(pil_images) <= 2) | |
tokenized_data += tokenized_str | |
masked_tokenized_data += tokenized_str | |
images_seq_mask += seq_mask | |
elif message['role'] == 'system' or message['role'] == 'deepseekapi-sys': | |
# 如果message里面有system,那就只允许出现在message的第一句,同时conv原本的system就会失效 | |
assert idx == 0, 'system information should only exist in the begining of the conversation' | |
formatted_system = message['content'].strip() | |
tokenized_str = self.encode(formatted_system, bos=False, eos=False) | |
tokenized_data += tokenized_str | |
if self.mask_prompt: | |
masked_tokenized_data += [self.ignore_id] * len(tokenized_str) | |
else: | |
masked_tokenized_data += tokenized_str | |
seq_mask = [False] * len(tokenized_str) | |
images_seq_mask += seq_mask | |
else: | |
assert False, f"Unknown role: {message['role']}" | |
assert len(tokenized_data) == len( | |
images_seq_mask), f"format_messages_v2: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}" | |
assert len(images_spatial_crop) == len(num_image_tokens), f"image number should be compatible" | |
return tokenized_data, masked_tokenized_data, images_list, images_seq_mask, images_spatial_crop, num_image_tokens | |
def format_prompts( | |
self, | |
prompts: str, | |
sft_format: str = "deepseek", | |
system_prompt: str = "", | |
): | |
""" | |
Applies the SFT template to prompts. | |
Args: | |
prompts (str): the non-sft formatted prompt; | |
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek". | |
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "". | |
Returns: | |
sft_prompt (str): The formatted text. | |
""" | |
conv = get_conv_template(sft_format) | |
conv.set_system_message(system_prompt) | |
conv.append_message(conv.roles[0], prompts.strip()) | |
conv.append_message(conv.roles[1], "") | |
sft_prompt = conv.get_prompt().strip() | |
return sft_prompt | |
def bos_id(self): | |
return self.tokenizer.bos_token_id | |
def eos_id(self): | |
return self.tokenizer.eos_token_id | |
def pad_id(self): | |
return self.tokenizer.pad_token_id | |
def encode(self, text: str, bos: bool = True, eos: bool = False): | |
t = self.tokenizer.encode(text, add_special_tokens=False) | |
if bos: | |
t = [self.bos_id] + t | |
if eos: | |
t = t + [self.eos_id] | |
return t | |
def decode(self, t: List[int], **kwargs) -> str: | |
return self.tokenizer.decode(t, **kwargs) | |
def process_one( | |
self, | |
prompt: str = None, | |
conversations: List[Dict[str, str]] = None, | |
images: List[Image.Image] = None, | |
apply_sft_format: bool = False, | |
inference_mode: bool = True, | |
system_prompt: str = "", | |
**kwargs, | |
): | |
""" | |
Args: | |
prompt (str): the formatted prompt; | |
conversations (List[Dict]): conversations with a list of messages; | |
images (List[ImageType]): the list of images; | |
apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt; | |
if conversations is not None, then it will always apply the SFT format to conversations; | |
inference_mode (bool): if True, then remove the last eos token; | |
system_prompt (str): the system prompt; | |
**kwargs: | |
Returns: | |
outputs (BaseProcessorOutput): the output of the processor, | |
- input_ids (torch.LongTensor): [N + image tokens] | |
- target_ids (torch.LongTensor): [N + image tokens] | |
- images (torch.FloatTensor): [n_images, 3, H, W] | |
- image_id (int): the id of the image token | |
- num_image_tokens (List[int]): the number of image tokens | |
""" | |
assert ( | |
prompt is None or conversations is None | |
), "prompt and conversations cannot be used at the same time." | |
if prompt is None: | |
# apply sft format | |
sft_format = self.format_messages( | |
conversations=conversations, | |
sft_format=self.sft_format, | |
system_prompt=system_prompt, | |
) | |
tokenized_str, masked_tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.format_messages_v2( | |
conversations, images) | |
else: | |
if apply_sft_format: | |
sft_format = self.format_prompts( | |
prompts=prompt, | |
sft_format=self.sft_format, | |
system_prompt=system_prompt | |
) | |
else: | |
sft_format = prompt | |
tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images( | |
sft_format, images, bos=True, eos=True, cropping=len(images) <= 2) | |
masked_tokenized_str = [] | |
for token_index in tokenized_str: | |
if token_index != self.image_token_id: | |
masked_tokenized_str.append(token_index) | |
else: | |
masked_tokenized_str.append(self.ignore_id) | |
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \ | |
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, " | |
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal") | |
input_ids = torch.LongTensor(tokenized_str) | |
target_ids = torch.LongTensor(masked_tokenized_str) | |
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool) | |
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id | |
target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = self.ignore_id | |
input_ids[input_ids < 0] = self.pad_id | |
if inference_mode: | |
# 去掉结尾的eos token | |
assert input_ids[-1] == self.eos_id | |
input_ids = input_ids[:-1] | |
target_ids = target_ids[:-1] | |
images_seq_mask = images_seq_mask[:-1] | |
if len(images_list) == 0: | |
images = torch.zeros((1, 3, self.image_size, self.image_size)) | |
images_spatial_crop = torch.zeros((1, 2), dtype=torch.long) | |
else: | |
images = torch.stack(images_list, dim=0) | |
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long) | |
prepare = VLChatProcessorOutput( | |
sft_format=sft_format, | |
input_ids=input_ids, | |
target_ids=target_ids, | |
images=images, | |
images_seq_mask=images_seq_mask, | |
images_spatial_crop=images_spatial_crop, | |
num_image_tokens=num_image_tokens | |
) | |
return prepare | |
def __call__( | |
self, | |
*, | |
prompt: str = None, | |
conversations: List[Dict[str, str]] = None, | |
images: List[Image.Image] = None, | |
apply_sft_format: bool = False, | |
force_batchify: bool = True, | |
inference_mode: bool = True, | |
system_prompt: str = "", | |
**kwargs, | |
): | |
""" | |
Args: | |
prompt (str): the formatted prompt; | |
conversations (List[Dict]): conversations with a list of messages; | |
images (List[ImageType]): the list of images; | |
apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt; | |
if conversations is not None, then it will always apply the SFT format to conversations; | |
force_batchify (bool): force batchify the inputs; | |
inference_mode (bool): if True, then remove the last eos token; | |
system_prompt (str): the system prompt; | |
**kwargs: | |
Returns: | |
outputs (BaseProcessorOutput): the output of the processor, | |
- input_ids (torch.LongTensor): [N + image tokens] | |
- images (torch.FloatTensor): [n_images, 3, H, W] | |
- image_id (int): the id of the image token | |
- num_image_tokens (List[int]): the number of image tokens | |
""" | |
prepare = self.process_one( | |
prompt=prompt, | |
conversations=conversations, | |
images=images, | |
apply_sft_format=apply_sft_format, | |
inference_mode=inference_mode, | |
system_prompt=system_prompt | |
) | |
if force_batchify: | |
prepare = self.batchify([prepare]) | |
return prepare | |
def tokenize_with_images( | |
self, | |
conversation: str, | |
images: List[Image.Image], | |
bos: bool = True, | |
eos: bool = True, | |
cropping: bool = True, | |
): | |
"""Tokenize text with <image> tags.""" | |
assert conversation.count(self.image_token) == len(images) | |
text_splits = conversation.split(self.image_token) | |
images_list, images_seq_mask, images_spatial_crop = [], [], [] | |
num_image_tokens = [] | |
tokenized_str = [] | |
for text_sep, image in zip(text_splits, images): | |
"""encode text_sep""" | |
tokenized_sep = self.encode(text_sep, bos=False, eos=False) | |
tokenized_str += tokenized_sep | |
images_seq_mask += [False] * len(tokenized_sep) | |
"""select best resolution for anyres""" | |
if cropping: | |
best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions) | |
else: | |
best_width, best_height = self.image_size, self.image_size | |
# print(image.size, (best_width, best_height)) # check the select_best_resolutions func | |
"""process the global view""" | |
global_view = ImageOps.pad(image, (self.image_size, self.image_size), | |
color=tuple(int(x * 255) for x in self.image_transform.mean)) | |
images_list.append(self.image_transform(global_view)) | |
"""process the local views""" | |
local_view = ImageOps.pad(image, (best_width, best_height), | |
color=tuple(int(x * 255) for x in self.image_transform.mean)) | |
for i in range(0, best_height, self.image_size): | |
for j in range(0, best_width, self.image_size): | |
images_list.append( | |
self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size)))) | |
"""record height / width crop num""" | |
num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size | |
images_spatial_crop.append([num_width_tiles, num_height_tiles]) | |
"""add image tokens""" | |
h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio) | |
# global views tokens h * (w + 1), 1 is for line seperator | |
tokenized_image = [self.image_token_id] * h * (w + 1) | |
# add a seperator between global and local views | |
tokenized_image += [self.image_token_id] | |
# local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1) | |
tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1) | |
tokenized_str += tokenized_image | |
images_seq_mask += [True] * len(tokenized_image) | |
num_image_tokens.append(len(tokenized_image)) | |
# print(width_crop_num, height_crop_num, len(tokenized_image)) # test the correctness of the number of image-related tokens | |
"""process the last text split""" | |
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False) | |
tokenized_str += tokenized_sep | |
images_seq_mask += [False] * len(tokenized_sep) | |
"""add the bos and eos tokens""" | |
if bos: | |
tokenized_str = [self.bos_id] + tokenized_str | |
images_seq_mask = [False] + images_seq_mask | |
if eos: | |
tokenized_str = tokenized_str + [self.eos_id] | |
images_seq_mask = images_seq_mask + [False] | |
assert len(tokenized_str) == len( | |
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}" | |
return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens | |
def batchify( | |
self, | |
sample_list: List[VLChatProcessorOutput], | |
padding: Literal["left", "right"] = "left" | |
) -> BatchCollateOutput: | |
""" | |
Preprocesses the inputs for multimodal inference. | |
Args: | |
sample_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput. | |
padding (str): The padding method. Defaults to "left". | |
Returns: | |
BatchCollateOutput: A dictionary of the inputs to use for multimodal inference. | |
""" | |
batched_sft_format = [sample.sft_format for sample in sample_list] | |
batched_input_ids = [sample.input_ids for sample in sample_list] | |
batched_labels = [sample.target_ids for sample in sample_list] | |
batched_images_seq_mask = [sample["images_seq_mask"] for sample in sample_list] | |
seq_lens = [len(sample) for sample in sample_list] | |
"""padding input_ids and images_seq_mask""" | |
if padding == "left": | |
# the tokenizer is default to pad at left | |
## TODO, You're using a LlamaTokenizerFast tokenizer. | |
# Please note that with a fast tokenizer, using the `__call__` method is faster than | |
# using a method to encode the text followed by a call to the `pad` method to get a padded encoding. | |
padded_input_ids = self.tokenizer.pad({"input_ids": batched_input_ids}) | |
batched_input_ids, batched_attention_mask = padded_input_ids["input_ids"], padded_input_ids[ | |
"attention_mask"].bool() | |
batched_labels = self.tokenizer.pad({"input_ids": batched_labels})["input_ids"] | |
batched_labels[batched_labels == self.pad_id] = self.ignore_id # labels正常不会出现pad_id,无需额外保护 | |
batched_images_seq_mask = self.tokenizer.pad({"input_ids": batched_images_seq_mask})["input_ids"] | |
batched_images_seq_mask[batched_images_seq_mask == self.pad_id] = False | |
else: | |
batched_input_ids = pad_sequence(batched_input_ids, batch_first=True, padding_value=self.pad_id) | |
batched_labels = pad_sequence(batched_labels, batch_first=True, padding_value=self.ignore_id) | |
batched_images_seq_mask = pad_sequence(batched_images_seq_mask, batch_first=True, padding_value=0) | |
batched_attention_mask = batched_input_ids != self.pad_id | |
"""padding images to max_patch_num""" | |
max_n_patches = max(sample["images"].shape[0] for sample in sample_list) | |
batched_images = [] | |
for sample in sample_list: | |
images = sample["images"] | |
n_pads = max_n_patches - images.shape[0] | |
if n_pads > 0: | |
pad_images = torch.zeros((n_pads, *images.shape[1:]), dtype=images.dtype) | |
images = torch.cat([images, pad_images], dim=0) | |
batched_images.append(images) | |
batched_images = torch.stack(batched_images, dim=0) | |
"""padding images_spatial_crop to max_n_images""" | |
max_n_images = max(sample["images_spatial_crop"].shape[0] for sample in sample_list) | |
batched_images_spatial_crop = [] | |
for sample in sample_list: | |
images_spatial_crop = sample["images_spatial_crop"] | |
n_pads = max_n_images - sample["images_spatial_crop"].shape[0] | |
if n_pads > 0: | |
pad_images_spatial_crop = torch.full((n_pads, 2), 0, dtype=images_spatial_crop.dtype) | |
images_spatial_crop = torch.cat([images_spatial_crop, pad_images_spatial_crop], dim=0) | |
batched_images_spatial_crop.append(images_spatial_crop) | |
batched_images_spatial_crop = torch.stack(batched_images_spatial_crop, dim=0) | |
batched_samples = BatchCollateOutput( | |
input_ids=batched_input_ids, | |
attention_mask=batched_attention_mask, | |
labels=batched_labels, | |
images=batched_images, | |
images_seq_mask=batched_images_seq_mask, | |
images_spatial_crop=batched_images_spatial_crop, | |
sft_format=batched_sft_format, | |
seq_lens=seq_lens | |
) | |
return batched_samples | |