import argparse import os from typing import Mapping import torch.nn.functional as F from PIL import Image from torch.nn import CrossEntropyLoss from torchvision import transforms from torchvision.utils import save_image from transformers import BeitFeatureExtractor, BeitForImageClassification from attacker import * use_gpu = torch.cuda.is_available() device = torch.device("cuda" if use_gpu else "cpu") def make_args(args_=None): parser = argparse.ArgumentParser(description='PyTorch MS_COCO Training') parser.add_argument('inputs', type=str) parser.add_argument('--out_dir', type=str, default='./output') parser.add_argument('--target', type=str, default='auto', help='[auto, ai, human, same]') parser.add_argument('--eps', type=float, default=8 / 8, help='Noise intensity ') parser.add_argument('--step_size', type=float, default=1.087313 / 8, help='Attack step size') parser.add_argument('--steps', type=int, default=20, help='Attack step count') parser.add_argument('--test_atk', action='store_true') return parser.parse_args(args_) IMAGE_EXTS = ('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff') class Attacker: def __init__(self, args): self.args = args os.makedirs(args.out_dir, exist_ok=True) print('正在加载模型...') self.feature_extractor = BeitFeatureExtractor.from_pretrained('saltacc/anime-ai-detect') self.model = BeitForImageClassification.from_pretrained('saltacc/anime-ai-detect') if use_gpu: self.model = self.model.cuda() print('加载完毕') if args.target == 'ai': # 攻击成被识别为AI self.target = torch.tensor([1]).to(device) elif args.target == 'human': self.target = torch.tensor([0]).to(device) else: self.target = torch.tensor([0]).to(device) dataset_mean_t = torch.tensor([0.5, 0.5, 0.5]).view(1, -1, 1, 1) dataset_std_t = torch.tensor([0.5, 0.5, 0.5]).view(1, -1, 1, 1) if use_gpu: dataset_mean_t = dataset_mean_t.cuda() dataset_std_t = dataset_std_t.cuda() self.pgd = PGD(self.model, img_transform=( lambda x: (x - dataset_mean_t) / dataset_std_t, lambda x: x * dataset_std_t + dataset_mean_t)) self.pgd.set_para(eps=(args.eps * 2) / 255, alpha=lambda: (args.step_size * 2) / 255, iters=args.steps) if args.target != 'same': self.pgd.set_loss(CrossEntropyLoss()) else: def loss_same(a, b): return -torch.exp((a[0, 0] - a[0, 1]) ** 2) self.pgd.set_loss(loss_same) def save_image(self, image, noise, img_name): # 缩放图片只缩放噪声 W, H = image.size noise = F.interpolate(noise, size=(H, W), mode='bicubic') img_save = transforms.ToTensor()(image) + noise save_image(img_save, os.path.join(self.args.out_dir, f'{img_name[:img_name.rfind(".")]}_atk.png')) def attack_(self, image, step_func=None): inputs = self.feature_extractor(images=image, return_tensors="pt")['pixel_values'] if use_gpu: inputs = inputs.cuda() if self.args.target == 'auto': with torch.no_grad(): outputs = self.model(inputs) logits = outputs.logits cls = logits.argmax(-1).item() target = torch.tensor([cls]).to(device) else: target = self.target if self.args.test_atk: self.test_image(inputs, 'before attack') atk_img = self.pgd.attack(inputs, target, step_func) noise = self.pgd.img_transform[1](atk_img).detach().cpu() - self.pgd.img_transform[1](inputs).detach().cpu() if self.args.test_atk: self.test_image(atk_img, 'after attack') return atk_img, noise def attack_one(self, path, step_func=None): image = Image.open(path).convert('RGB') atk_img, noise = self.attack_(image, step_func) self.save_image(image, noise, os.path.basename(path)) def attack(self, path, step_func=None): self.attack_one(path, step_func) @torch.no_grad() def test_image(self, img, pre_fix=None): outputs = self.model(img) logits = outputs.logits _ = pre_fix confidences = torch.softmax(logits.reshape(-1), dim=0) return {self.model.config.id2label[i]: float(conf) for i, conf in enumerate(confidences)} @torch.no_grad() def image_predict(self, image: Image.Image) -> Mapping[str, float]: inputs = self.feature_extractor(images=image, return_tensors="pt")['pixel_values'] return self.test_image(inputs) if __name__ == '__main__': args = make_args() attacker = Attacker(args) attacker.attack(args.inputs)