Spaces:
Runtime error
Runtime error
Dhruv Diddi
commited on
Commit
Β·
e1d4069
1
Parent(s):
a8c30fe
any text to stable diffusion
Browse files
app.py
CHANGED
|
@@ -1,117 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
#import torch
|
| 3 |
-
import whisper
|
| 4 |
from datetime import datetime
|
| 5 |
from PIL import Image
|
| 6 |
import flag
|
| 7 |
import os
|
| 8 |
-
#MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
|
| 9 |
-
|
| 10 |
-
#from diffusers import StableDiffusionPipeline
|
| 11 |
|
| 12 |
stable_diffusion = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion")
|
| 13 |
### ββββββββββββββββββββββββββββββββββββββββ
|
| 14 |
|
| 15 |
-
title="
|
| 16 |
-
|
| 17 |
-
### ββββββββββββββββββββββββββββββββββββββββ
|
| 18 |
-
|
| 19 |
-
whisper_model = whisper.load_model("small")
|
| 20 |
-
|
| 21 |
-
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 22 |
-
|
| 23 |
-
#pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=MY_SECRET_TOKEN)
|
| 24 |
-
#pipe.to(device)
|
| 25 |
-
|
| 26 |
-
### ββββββββββββββββββββββββββββββββββββββββ
|
| 27 |
|
| 28 |
def get_images(prompt):
|
| 29 |
gallery_dir = stable_diffusion(prompt, fn_index=2)
|
| 30 |
return [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)]
|
| 31 |
|
| 32 |
|
| 33 |
-
def magic_whisper_to_sd(audio, guidance_scale, nb_iterations, seed):
|
| 34 |
-
|
| 35 |
-
whisper_results = translate(audio)
|
| 36 |
-
prompt = whisper_results[2]
|
| 37 |
-
images = get_images(prompt)
|
| 38 |
-
|
| 39 |
-
return whisper_results[0], whisper_results[1], whisper_results[2], images
|
| 40 |
-
|
| 41 |
-
#def diffuse(prompt, guidance_scale, nb_iterations, seed):
|
| 42 |
-
#
|
| 43 |
-
# generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 44 |
-
#
|
| 45 |
-
# print("""
|
| 46 |
-
# β
|
| 47 |
-
# Sending prompt to Stable Diffusion ...
|
| 48 |
-
# β
|
| 49 |
-
# """)
|
| 50 |
-
# print("prompt: " + prompt)
|
| 51 |
-
# print("guidance scale: " + str(guidance_scale))
|
| 52 |
-
# print("inference steps: " + str(nb_iterations))
|
| 53 |
-
# print("seed: " + str(seed))
|
| 54 |
-
#
|
| 55 |
-
# images_list = pipe(
|
| 56 |
-
# [prompt] * 2,
|
| 57 |
-
# guidance_scale=guidance_scale,
|
| 58 |
-
# num_inference_steps=nb_iterations,
|
| 59 |
-
# generator=generator
|
| 60 |
-
# )
|
| 61 |
-
#
|
| 62 |
-
# images = []
|
| 63 |
-
#
|
| 64 |
-
# safe_image = Image.open(r"unsafe.png")
|
| 65 |
-
#
|
| 66 |
-
# for i, image in enumerate(images_list["sample"]):
|
| 67 |
-
# if(images_list["nsfw_content_detected"][i]):
|
| 68 |
-
# images.append(safe_image)
|
| 69 |
-
# else:
|
| 70 |
-
# images.append(image)
|
| 71 |
-
#
|
| 72 |
-
#
|
| 73 |
-
# print("Stable Diffusion has finished")
|
| 74 |
-
# print("βββββββββββββββββββββββββββββββββββββββββββ")
|
| 75 |
-
#
|
| 76 |
-
# return images
|
| 77 |
-
|
| 78 |
-
def translate(audio):
|
| 79 |
-
print("""
|
| 80 |
-
β
|
| 81 |
-
Sending audio to Whisper ...
|
| 82 |
-
β
|
| 83 |
-
""")
|
| 84 |
-
# current dateTime
|
| 85 |
-
now = datetime.now()
|
| 86 |
-
# convert to string
|
| 87 |
-
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
| 88 |
-
print('DateTime String:', date_time_str)
|
| 89 |
-
|
| 90 |
-
audio = whisper.load_audio(audio)
|
| 91 |
-
audio = whisper.pad_or_trim(audio)
|
| 92 |
-
|
| 93 |
-
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
| 94 |
-
|
| 95 |
-
_, probs = whisper_model.detect_language(mel)
|
| 96 |
-
|
| 97 |
-
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
|
| 98 |
-
translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
|
| 99 |
-
|
| 100 |
-
transcription = whisper.decode(whisper_model, mel, transcript_options)
|
| 101 |
-
translation = whisper.decode(whisper_model, mel, translate_options)
|
| 102 |
-
|
| 103 |
-
print("language spoken: " + transcription.language)
|
| 104 |
-
print("transcript: " + transcription.text)
|
| 105 |
-
print("βββββββββββββββββββββββββββββββββββββββββββ")
|
| 106 |
-
print("translated: " + translation.text)
|
| 107 |
-
if transcription.language == "en":
|
| 108 |
-
tr_flag = flag.flag('GB')
|
| 109 |
-
else:
|
| 110 |
-
tr_flag = flag.flag(transcription.language)
|
| 111 |
-
return tr_flag, transcription.text, translation.text
|
| 112 |
-
|
| 113 |
-
### ββββββββββββββββββββββββββββββββββββββββ
|
| 114 |
-
|
| 115 |
css = """
|
| 116 |
.container {
|
| 117 |
max-width: 880px;
|
|
@@ -274,15 +176,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 274 |
with gr.Column():
|
| 275 |
gr.HTML('''
|
| 276 |
<h1>
|
| 277 |
-
|
| 278 |
</h1>
|
| 279 |
<p style='text-align: center;'>
|
| 280 |
-
Ask stable diffusion
|
| 281 |
</p>
|
| 282 |
|
| 283 |
<p style='text-align: center;'>
|
| 284 |
-
This demo is
|
| 285 |
-
β
|
| 286 |
</p>
|
| 287 |
|
| 288 |
''')
|
|
@@ -291,35 +192,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 291 |
|
| 292 |
gr.Markdown(
|
| 293 |
"""
|
| 294 |
-
|
| 295 |
-
## 1. Record audio or Upload an audio file:
|
| 296 |
"""
|
| 297 |
)
|
| 298 |
|
| 299 |
-
with gr.Tab(label="Record audio input", elem_id="record_tab"):
|
| 300 |
-
with gr.Column():
|
| 301 |
-
record_input = gr.Audio(
|
| 302 |
-
source="microphone",
|
| 303 |
-
type="filepath",
|
| 304 |
-
show_label=False,
|
| 305 |
-
elem_id="record_btn"
|
| 306 |
-
)
|
| 307 |
-
with gr.Row():
|
| 308 |
-
audio_r_translate = gr.Button("Check Whisper first ? π", elem_id="check_btn_1")
|
| 309 |
-
audio_r_direct_sd = gr.Button("Magic Whisper βΊ SD right now!", elem_id="magic_btn_1")
|
| 310 |
-
|
| 311 |
-
with gr.Tab(label="Upload audio input", elem_id="upload_tab"):
|
| 312 |
-
with gr.Column():
|
| 313 |
-
upload_input = gr.Audio(
|
| 314 |
-
source="upload",
|
| 315 |
-
type="filepath",
|
| 316 |
-
show_label=False,
|
| 317 |
-
elem_id="upload_area"
|
| 318 |
-
)
|
| 319 |
-
with gr.Row():
|
| 320 |
-
audio_u_translate = gr.Button("Check Whisper first ? π", elem_id="check_btn_2")
|
| 321 |
-
audio_u_direct_sd = gr.Button("Magic Whisper βΊ SD right now!", elem_id="magic_btn_2")
|
| 322 |
|
|
|
|
| 323 |
with gr.Accordion(label="Stable Diffusion Settings", elem_id="sd_settings", visible=False):
|
| 324 |
with gr.Row():
|
| 325 |
guidance_scale = gr.Slider(2, 15, value = 7, label = 'Guidance Scale')
|
|
@@ -328,28 +206,27 @@ with gr.Blocks(css=css) as demo:
|
|
| 328 |
|
| 329 |
gr.Markdown(
|
| 330 |
"""
|
| 331 |
-
## 2.
|
| 332 |
"""
|
| 333 |
)
|
| 334 |
|
| 335 |
with gr.Row():
|
| 336 |
|
| 337 |
transcripted_output = gr.Textbox(
|
| 338 |
-
label="
|
| 339 |
lines=3,
|
| 340 |
-
elem_id="
|
| 341 |
)
|
| 342 |
-
|
| 343 |
-
|
| 344 |
with gr.Column():
|
| 345 |
translated_output = gr.Textbox(
|
| 346 |
-
label="
|
| 347 |
lines=4,
|
| 348 |
elem_id="translated"
|
| 349 |
)
|
| 350 |
with gr.Row():
|
| 351 |
clear_btn = gr.Button(value="Clear")
|
| 352 |
-
diffuse_btn = gr.Button(value="
|
| 353 |
|
| 354 |
clear_btn.click(fn=lambda value: gr.update(value=""), inputs=clear_btn, outputs=translated_output)
|
| 355 |
|
|
@@ -362,8 +239,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 362 |
|
| 363 |
|
| 364 |
gr.Markdown("""
|
| 365 |
-
## 3.
|
| 366 |
-
Inference time is about ~
|
| 367 |
"""
|
| 368 |
)
|
| 369 |
|
|
@@ -371,11 +248,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 371 |
|
| 372 |
|
| 373 |
gr.Markdown("""
|
| 374 |
-
### π
|
| 375 |
-
|
| 376 |
-
<strong>Whisper</strong> is a general-purpose speech recognition model.<br /><br />
|
| 377 |
-
It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. <br />
|
| 378 |
-
β
|
| 379 |
</p>
|
| 380 |
<p style='font-size: 1em;line-height: 1.5em;'>
|
| 381 |
<strong>Stable Diffusion</strong> is a state of the art text-to-image model that generates images from text.
|
|
@@ -406,49 +280,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 406 |
|
| 407 |
""", elem_id="about")
|
| 408 |
|
| 409 |
-
audio_r_translate.click(translate,
|
| 410 |
-
inputs = record_input,
|
| 411 |
-
outputs = [
|
| 412 |
-
language_detected_output,
|
| 413 |
-
transcripted_output,
|
| 414 |
-
translated_output
|
| 415 |
-
])
|
| 416 |
-
|
| 417 |
-
audio_u_translate.click(translate,
|
| 418 |
-
inputs = upload_input,
|
| 419 |
-
outputs = [
|
| 420 |
-
language_detected_output,
|
| 421 |
-
transcripted_output,
|
| 422 |
-
translated_output
|
| 423 |
-
])
|
| 424 |
-
|
| 425 |
-
audio_r_direct_sd.click(magic_whisper_to_sd,
|
| 426 |
-
inputs = [
|
| 427 |
-
record_input,
|
| 428 |
-
guidance_scale,
|
| 429 |
-
nb_iterations,
|
| 430 |
-
seed
|
| 431 |
-
],
|
| 432 |
-
outputs = [
|
| 433 |
-
language_detected_output,
|
| 434 |
-
transcripted_output,
|
| 435 |
-
translated_output,
|
| 436 |
-
sd_output
|
| 437 |
-
])
|
| 438 |
-
|
| 439 |
-
audio_u_direct_sd.click(magic_whisper_to_sd,
|
| 440 |
-
inputs = [
|
| 441 |
-
upload_input,
|
| 442 |
-
guidance_scale,
|
| 443 |
-
nb_iterations,
|
| 444 |
-
seed
|
| 445 |
-
],
|
| 446 |
-
outputs = [
|
| 447 |
-
language_detected_output,
|
| 448 |
-
transcripted_output,
|
| 449 |
-
translated_output,
|
| 450 |
-
sd_output
|
| 451 |
-
])
|
| 452 |
|
| 453 |
diffuse_btn.click(get_images,
|
| 454 |
inputs = [
|
|
@@ -456,12 +287,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 456 |
],
|
| 457 |
outputs = sd_output
|
| 458 |
)
|
| 459 |
-
gr.HTML('''
|
| 460 |
-
<div class="footer">
|
| 461 |
-
<p>Whisper by <a href="https://github.com/openai/whisper" target="_blank">OpenAI</a> - Stable Diffusion by <a href="https://huggingface.co/CompVis" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" target="_blank">Stability AI</a>
|
| 462 |
-
</p>
|
| 463 |
-
</div>
|
| 464 |
-
''')
|
| 465 |
|
| 466 |
|
| 467 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
from datetime import datetime
|
| 3 |
from PIL import Image
|
| 4 |
import flag
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
stable_diffusion = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion")
|
| 8 |
### ββββββββββββββββββββββββββββββββββββββββ
|
| 9 |
|
| 10 |
+
title="Any Text to Stable Diffusion"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def get_images(prompt):
|
| 13 |
gallery_dir = stable_diffusion(prompt, fn_index=2)
|
| 14 |
return [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)]
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
css = """
|
| 18 |
.container {
|
| 19 |
max-width: 880px;
|
|
|
|
| 176 |
with gr.Column():
|
| 177 |
gr.HTML('''
|
| 178 |
<h1>
|
| 179 |
+
Any Text to Stable Diffusion
|
| 180 |
</h1>
|
| 181 |
<p style='text-align: center;'>
|
| 182 |
+
Ask stable diffusion in any language !
|
| 183 |
</p>
|
| 184 |
|
| 185 |
<p style='text-align: center;'>
|
| 186 |
+
This demo is connected to StableDiffusion Space β’ Offered by ddiddi <br />
|
|
|
|
| 187 |
</p>
|
| 188 |
|
| 189 |
''')
|
|
|
|
| 192 |
|
| 193 |
gr.Markdown(
|
| 194 |
"""
|
| 195 |
+
## 1. Stable Diffusion Config
|
|
|
|
| 196 |
"""
|
| 197 |
)
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
|
| 201 |
with gr.Accordion(label="Stable Diffusion Settings", elem_id="sd_settings", visible=False):
|
| 202 |
with gr.Row():
|
| 203 |
guidance_scale = gr.Slider(2, 15, value = 7, label = 'Guidance Scale')
|
|
|
|
| 206 |
|
| 207 |
gr.Markdown(
|
| 208 |
"""
|
| 209 |
+
## 2. Enter prompt
|
| 210 |
"""
|
| 211 |
)
|
| 212 |
|
| 213 |
with gr.Row():
|
| 214 |
|
| 215 |
transcripted_output = gr.Textbox(
|
| 216 |
+
label="Enter prompt",
|
| 217 |
lines=3,
|
| 218 |
+
elem_id="transcript"
|
| 219 |
)
|
| 220 |
+
|
|
|
|
| 221 |
with gr.Column():
|
| 222 |
translated_output = gr.Textbox(
|
| 223 |
+
label="in English",
|
| 224 |
lines=4,
|
| 225 |
elem_id="translated"
|
| 226 |
)
|
| 227 |
with gr.Row():
|
| 228 |
clear_btn = gr.Button(value="Clear")
|
| 229 |
+
diffuse_btn = gr.Button(value="YES", elem_id="diffuse_btn")
|
| 230 |
|
| 231 |
clear_btn.click(fn=lambda value: gr.update(value=""), inputs=clear_btn, outputs=translated_output)
|
| 232 |
|
|
|
|
| 239 |
|
| 240 |
|
| 241 |
gr.Markdown("""
|
| 242 |
+
## 3. Stable Diffusion Results
|
| 243 |
+
Inference time is about ~30-40 seconds
|
| 244 |
"""
|
| 245 |
)
|
| 246 |
|
|
|
|
| 248 |
|
| 249 |
|
| 250 |
gr.Markdown("""
|
| 251 |
+
### π Resources
|
| 252 |
+
|
|
|
|
|
|
|
|
|
|
| 253 |
</p>
|
| 254 |
<p style='font-size: 1em;line-height: 1.5em;'>
|
| 255 |
<strong>Stable Diffusion</strong> is a state of the art text-to-image model that generates images from text.
|
|
|
|
| 280 |
|
| 281 |
""", elem_id="about")
|
| 282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
diffuse_btn.click(get_images,
|
| 285 |
inputs = [
|
|
|
|
| 287 |
],
|
| 288 |
outputs = sd_output
|
| 289 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
|
| 292 |
if __name__ == "__main__":
|