import logging import sys import gradio as gr from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) DICT_MODELS = { "robust-300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian-robust", "has_lm": True}, "robust-1b": {"model_id": "dbdmg/wav2vec2-xls-r-1b-italian-robust", "has_lm": True}, "300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian", "has_lm": True}, } # LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys()) # the container given by HF has 16GB of RAM, so we need to limit the number of models to load MODELS = sorted(DICT_MODELS.keys()) CACHED_MODELS_BY_ID = {} def run(input_file, model_name, decoding_type, history): logger.info(f"Running ASR {model_name}-{decoding_type} for {input_file}") history = history or [] model = DICT_MODELS.get(model_name) if model is None: history.append({ "error_message": f"Model size {model_size} not found for {language} language :(" }) elif decoding_type == "Guided by Language Model" and not model["has_lm"]: history.append({ "error_message": f"LM not available for {language} language :(" }) else: # model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None) if model_instance is None: model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) CACHED_MODELS_BY_ID[model["model_id"]] = model_instance if decoding_type == "Guided by Language Model": processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder) else: processor = Wav2Vec2Processor.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=None) transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"] logger.info(f"Transcription for {input_file}: {transcription}") history.append({ "model_id": model["model_id"], "decoding_type": decoding_type, "transcription": transcription, "error_message": None }) html_output = "