import os import gradio as gr from src.run.yolov3.inference import YoloInfer infer = YoloInfer(model_path="./checkpoint/model.pt") demo = gr.Interface( fn=infer.infer, inputs=[ gr.Image( shape=(416, 416), label="Input Image", value="./sample/bird_plane.jpeg", ), gr.Slider( minimum=0, maximum=1, value=0.2, label="IOU Threshold", info="Permissible overlap for the same class bounding boxes", ), gr.Slider( minimum=0, maximum=1, value=0.95, label="Objectness Threshold", info="Confidence for each pixel to predict an object", ), gr.Slider( minimum=0, maximum=1, value=0.5, label="Class Threshold", info="Confidence for each pixel to predict a class", ), gr.Slider( minimum=0, maximum=10, value=1, label="Font Size", info="Bounding box text size", ), ], outputs=[ gr.Image(), ], examples=[ [os.path.join("./sample/", f)] for f in os.listdir("./sample/") ], ) demo.launch()