Upload 35 files
Browse files- app.py +29 -0
- checkpoint/resunet/decoder.pt +3 -0
- requirements.txt +12 -0
- sample/bird_plane.jpeg +0 -0
- sample/dog.jpeg +0 -0
- sample/group.webp +0 -0
- sample/horse_person_cycle.jpeg +0 -0
- sample/mask.jpeg +0 -0
- sample/people.jpeg +0 -0
- sample/titanic.jpeg +0 -0
- src/datasets/__init__.py +0 -0
- src/datasets/coco/README.md +6 -0
- src/datasets/coco/dataset.ipynb +0 -0
- src/datasets/coco/dataset.py +137 -0
- src/datasets/coco/samples/airplane.png +0 -0
- src/datasets/coco/samples/giraffe.png +0 -0
- src/datasets/coco/samples/people.png +0 -0
- src/datasets/coco/samples/zebra.png +0 -0
- src/models/unet/__init__.py +0 -0
- src/models/unet/config/carvana_config.yml +81 -0
- src/models/unet/config/paper_config.yml +60 -0
- src/models/unet/config/resnet_config.yml +32 -0
- src/models/unet/decoder/__init__.py +1 -0
- src/models/unet/decoder/decoder.py +76 -0
- src/models/unet/encoder/__init__.py +2 -0
- src/models/unet/encoder/encoder.py +80 -0
- src/models/unet/encoder/resnet.py +30 -0
- src/models/unet/example/model_sample.ipynb +532 -0
- src/models/unet/resunet.py +66 -0
- src/run/unet/example/binary_segmentation_resunet.ipynb +0 -0
- src/run/unet/inference.py +111 -0
- src/unet/__init__.py +0 -0
- src/unet/config/carvana_config.yml +81 -0
- src/unet/config/paper_config.yml +60 -0
- src/unet/model.py +175 -0
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from src.run.unet.inference import ResUnetInfer
|
6 |
+
|
7 |
+
|
8 |
+
infer = ResUnetInfer(
|
9 |
+
model_path="./checkpoint/resunet/decoder.pt",
|
10 |
+
config_path="./src/models/unet/config/resnet_config.yml",
|
11 |
+
)
|
12 |
+
|
13 |
+
demo = gr.Interface(
|
14 |
+
fn=infer.infer,
|
15 |
+
inputs=[
|
16 |
+
gr.Image(
|
17 |
+
shape=(224, 224),
|
18 |
+
label="Input Image",
|
19 |
+
value="./sample/bird_plane.jpeg",
|
20 |
+
)
|
21 |
+
],
|
22 |
+
outputs=[
|
23 |
+
gr.Image(),
|
24 |
+
],
|
25 |
+
examples=[[os.path.join("./sample/", f)] for f in os.listdir("./sample/")],
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
demo.launch()
|
checkpoint/resunet/decoder.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df2780f1ec58f0a9653c951b341102097ef20a8bbd9cd9aba2ea8e789876b9ae
|
3 |
+
size 189285667
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchinfo
|
3 |
+
easydict
|
4 |
+
gradio
|
5 |
+
torchvision
|
6 |
+
numpy
|
7 |
+
grad - cam
|
8 |
+
Pillow
|
9 |
+
albumentations
|
10 |
+
tqdm
|
11 |
+
opencv - python
|
12 |
+
matplotlib
|
sample/bird_plane.jpeg
ADDED
sample/dog.jpeg
ADDED
sample/group.webp
ADDED
sample/horse_person_cycle.jpeg
ADDED
sample/mask.jpeg
ADDED
sample/people.jpeg
ADDED
sample/titanic.jpeg
ADDED
src/datasets/__init__.py
ADDED
File without changes
|
src/datasets/coco/README.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Coco Dataset Sample
|
2 |
+
|
3 |
+
![Image1](samples/people.png)
|
4 |
+
![Image2](samples/giraffe.png)
|
5 |
+
![Image3](samples/airplane.png)
|
6 |
+
![Image4](samples/zebra.png)
|
src/datasets/coco/dataset.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/datasets/coco/dataset.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
from typing import Any, Callable, List, Optional, Tuple
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision.datasets import VisionDataset
|
8 |
+
|
9 |
+
|
10 |
+
class CocoDetection(VisionDataset):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
root: str,
|
14 |
+
annFile: str,
|
15 |
+
class_names: Optional[List] = None,
|
16 |
+
transform: Optional[Callable] = None,
|
17 |
+
target_transform: Optional[Callable] = None,
|
18 |
+
transforms: Optional[Callable] = None,
|
19 |
+
) -> None:
|
20 |
+
super().__init__(root, transforms, transform, target_transform)
|
21 |
+
from pycocotools.coco import COCO
|
22 |
+
|
23 |
+
self.coco = COCO(annFile)
|
24 |
+
|
25 |
+
if class_names is not None:
|
26 |
+
cat_ids = self._get_category_ids_from_name(category_names=class_names)
|
27 |
+
self.ids = list(
|
28 |
+
sorted((self._get_img_ids_for_category_ids(category_ids=cat_ids)))
|
29 |
+
)
|
30 |
+
|
31 |
+
else:
|
32 |
+
cat_ids = self.coco.getCatIds()
|
33 |
+
self.ids = list(sorted(self.coco.imgs.keys()))
|
34 |
+
|
35 |
+
self.cat2idx = {cat_id: idx + 1 for idx, cat_id in enumerate(cat_ids)}
|
36 |
+
self.cat2idx[0] = 0
|
37 |
+
|
38 |
+
def _load_image(self, id: int) -> Image.Image:
|
39 |
+
path = self.coco.loadImgs(id)[0]["file_name"]
|
40 |
+
return Image.open(os.path.join(self.root, path)).convert("RGB")
|
41 |
+
|
42 |
+
def _load_target(self, id: int) -> List[Any]:
|
43 |
+
return self.coco.loadAnns(self.coco.getAnnIds(id))
|
44 |
+
|
45 |
+
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
46 |
+
id = self.ids[index]
|
47 |
+
image = self._load_image(id)
|
48 |
+
mask = self._load_target(id)
|
49 |
+
|
50 |
+
mask = self._get_mask_in_channels(image, mask)
|
51 |
+
|
52 |
+
if self.transform is not None:
|
53 |
+
image = self.transform(image=np.array(image))["image"]
|
54 |
+
|
55 |
+
if self.target_transform is not None:
|
56 |
+
mask = self.target_transform(image=mask)["image"]
|
57 |
+
|
58 |
+
return image, (mask != 0).int()
|
59 |
+
|
60 |
+
def __len__(self) -> int:
|
61 |
+
return len(self.ids)
|
62 |
+
|
63 |
+
def _get_all_classes(self):
|
64 |
+
catIDs = self.coco.getCatIds()
|
65 |
+
return self.coco.loadCats(catIDs)
|
66 |
+
|
67 |
+
def _get_category_info_from_ids(self, ids: list):
|
68 |
+
all_cat = self._get_all_classes()
|
69 |
+
return [category for category in all_cat if category["id"] in ids]
|
70 |
+
|
71 |
+
def _get_category_ids_from_name(self, category_names: list):
|
72 |
+
return self.coco.getCatIds(catNms=category_names)
|
73 |
+
|
74 |
+
def _get_img_ids_for_category_ids(self, category_ids: list):
|
75 |
+
img_ids = []
|
76 |
+
|
77 |
+
for catIds in category_ids:
|
78 |
+
img_ids.extend(self.coco.getImgIds(catIds=catIds))
|
79 |
+
|
80 |
+
return img_ids
|
81 |
+
|
82 |
+
def _get_img_ids_for_category_names(self, category_names: list):
|
83 |
+
img_ids = []
|
84 |
+
category_ids = self._get_category_ids_from_name(category_names=class_names)
|
85 |
+
|
86 |
+
for catIds in category_ids:
|
87 |
+
img_ids.extend(self.coco.getImgIds(catIds=catIds))
|
88 |
+
|
89 |
+
return img_ids
|
90 |
+
|
91 |
+
def _get_all_category_ids_in_img_id(self, img_id: int) -> List:
|
92 |
+
target = self._load_target(img_id)
|
93 |
+
return list({annotation["category_id"] for annotation in target})
|
94 |
+
|
95 |
+
def _get_mask_aggregated(self, image: Image, annotations: List) -> np.array:
|
96 |
+
w, h = image.size
|
97 |
+
mask = np.zeros((h, w))
|
98 |
+
|
99 |
+
for annotation in annotations:
|
100 |
+
category_id = annotation["category_id"]
|
101 |
+
|
102 |
+
if category_id in self.cat2idx:
|
103 |
+
pixel_value = self.cat2idx[category_id]
|
104 |
+
mask = np.maximum(self.coco.annToMask(annotation) * pixel_value, mask)
|
105 |
+
|
106 |
+
return mask
|
107 |
+
|
108 |
+
def _get_mask_in_channels(self, image: Image, annotations: List) -> np.array:
|
109 |
+
w, h = image.size
|
110 |
+
mask = np.zeros((len(self.cat2idx), h, w))
|
111 |
+
|
112 |
+
for annotation in annotations:
|
113 |
+
category_id = annotation["category_id"]
|
114 |
+
|
115 |
+
if category_id in self.cat2idx:
|
116 |
+
pixel_value = self.cat2idx[category_id]
|
117 |
+
mask[pixel_value] = np.maximum(
|
118 |
+
self.coco.annToMask(annotation), mask[pixel_value]
|
119 |
+
)
|
120 |
+
|
121 |
+
# [h, w, channels]
|
122 |
+
mask = np.transpose(mask, (1, 2, 0))
|
123 |
+
return mask
|
124 |
+
|
125 |
+
def _plot_image_and_mask(self, index):
|
126 |
+
image, mask = self.__getitem__(index)
|
127 |
+
|
128 |
+
# Create a figure with two subplots side by side
|
129 |
+
fig, axs = plt.subplots(1, 2, figsize=(7, 3))
|
130 |
+
|
131 |
+
axs[0].imshow(image.permute(1, 2, 0))
|
132 |
+
axs[0].set_title("Image")
|
133 |
+
|
134 |
+
axs[1].imshow(mask.sum(0, keepdim=True).permute(1, 2, 0))
|
135 |
+
axs[1].set_title("Mask")
|
136 |
+
|
137 |
+
plt.show()
|
src/datasets/coco/samples/airplane.png
ADDED
src/datasets/coco/samples/giraffe.png
ADDED
src/datasets/coco/samples/people.png
ADDED
src/datasets/coco/samples/zebra.png
ADDED
src/models/unet/__init__.py
ADDED
File without changes
|
src/models/unet/config/carvana_config.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Input (1, 512, 512)
|
2 |
+
# Output (64, 512, 512)
|
3 |
+
decoder_config:
|
4 |
+
block5: # (1024, 32, 32)
|
5 |
+
in_channels: 1024
|
6 |
+
kernel_size: 3
|
7 |
+
out_channels: 1024
|
8 |
+
padding:
|
9 |
+
- 1
|
10 |
+
- 1
|
11 |
+
stride: 1 # (1024, 32, 32)
|
12 |
+
block4: # (1024, 32, 32)
|
13 |
+
in_channels: 1024
|
14 |
+
kernel_size: 2
|
15 |
+
out_channels: 512
|
16 |
+
padding:
|
17 |
+
- 0
|
18 |
+
- 1
|
19 |
+
stride: 2 # (512, 64, 64)
|
20 |
+
block3: # (512, 64, 64)
|
21 |
+
in_channels: 512
|
22 |
+
kernel_size: 2
|
23 |
+
out_channels: 256
|
24 |
+
padding:
|
25 |
+
- 0
|
26 |
+
- 1
|
27 |
+
stride: 2 # (256, 128, 128)
|
28 |
+
block2: # (256, 128, 128)
|
29 |
+
in_channels: 256
|
30 |
+
kernel_size: 2
|
31 |
+
out_channels: 128
|
32 |
+
padding:
|
33 |
+
- 0
|
34 |
+
- 1
|
35 |
+
stride: 2 # (128, 256, 256)
|
36 |
+
block1: # (128, 256, 256)
|
37 |
+
in_channels: 128
|
38 |
+
kernel_size: 2
|
39 |
+
out_channels: 64
|
40 |
+
padding:
|
41 |
+
- 0
|
42 |
+
- 1
|
43 |
+
stride: 2 # (64, 512, 512)
|
44 |
+
encoder_config:
|
45 |
+
block1: # (1, 512, 512)
|
46 |
+
all_padding: true
|
47 |
+
in_channels: 1
|
48 |
+
maxpool: true
|
49 |
+
n_layers: 2
|
50 |
+
out_channels: 64 # (64, 256, 256)
|
51 |
+
block2: # (64, 256, 256)
|
52 |
+
all_padding: true
|
53 |
+
in_channels: 64
|
54 |
+
maxpool: true
|
55 |
+
n_layers: 2
|
56 |
+
out_channels: 128 # (128, 128, 128)
|
57 |
+
block3: # (128, 128, 128)
|
58 |
+
all_padding: true
|
59 |
+
in_channels: 128
|
60 |
+
maxpool: true
|
61 |
+
n_layers: 2
|
62 |
+
out_channels: 256 # (256, 64, 64)
|
63 |
+
block4: # (256, 64, 64)
|
64 |
+
all_padding: true
|
65 |
+
in_channels: 256
|
66 |
+
maxpool: true
|
67 |
+
n_layers: 2
|
68 |
+
out_channels: 512 # (512, 32, 32)
|
69 |
+
block5: # (512, 32, 32)
|
70 |
+
all_padding: true
|
71 |
+
in_channels: 512
|
72 |
+
maxpool: false
|
73 |
+
n_layers: 2
|
74 |
+
out_channels: 512 # (512, 32, 32)
|
75 |
+
block6: # (512, 32, 32)
|
76 |
+
all_padding: true
|
77 |
+
in_channels: 512
|
78 |
+
maxpool: false
|
79 |
+
n_layers: 2
|
80 |
+
out_channels: 1024 # (1024, 32, 32)
|
81 |
+
nclasses: 2
|
src/models/unet/config/paper_config.yml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original UNet Paper Configuration
|
2 |
+
# Input shape [1, 572, 572]
|
3 |
+
# Output shape [64, 388, 388]
|
4 |
+
decoder_config:
|
5 |
+
block4: # [1024, 28, 28]
|
6 |
+
in_channels: 1024
|
7 |
+
kernel_size: 2
|
8 |
+
out_channels: 512
|
9 |
+
padding: [0, 0]
|
10 |
+
stride: 2 # [512, 52, 52]
|
11 |
+
block3: # [512, 52, 52]
|
12 |
+
in_channels: 512
|
13 |
+
kernel_size: 2
|
14 |
+
out_channels: 256
|
15 |
+
padding: [0, 0]
|
16 |
+
stride: 2 # [256, 100, 100]
|
17 |
+
block2: # [256, 100, 100]
|
18 |
+
in_channels: 256
|
19 |
+
kernel_size: 2
|
20 |
+
out_channels: 128
|
21 |
+
padding: [0, 0]
|
22 |
+
stride: 2 # [128, 196, 196]
|
23 |
+
block1: # [128, 196, 196]
|
24 |
+
in_channels: 128
|
25 |
+
kernel_size: 2
|
26 |
+
out_channels: 64
|
27 |
+
padding: [0, 0]
|
28 |
+
stride: 2 # [64, 388, 388]
|
29 |
+
encoder_config:
|
30 |
+
block1: # [1, 572, 572]
|
31 |
+
all_padding: false
|
32 |
+
in_channels: 1
|
33 |
+
maxpool: true
|
34 |
+
n_layers: 2
|
35 |
+
out_channels: 64 # [64, 568/2, 568/2] = [64, 284, 284]
|
36 |
+
block2: # [64, 568/2, 568/2] = [64, 284, 284]
|
37 |
+
all_padding: false
|
38 |
+
in_channels: 64
|
39 |
+
maxpool: true
|
40 |
+
n_layers: 2
|
41 |
+
out_channels: 128 # [128, 280/2, 280/2] = [128, 140, 140]
|
42 |
+
block3: # [128, 280/2, 280/2] = [128, 140, 140]
|
43 |
+
all_padding: false
|
44 |
+
in_channels: 128
|
45 |
+
maxpool: true
|
46 |
+
n_layers: 2
|
47 |
+
out_channels: 256 # [256, 136/2, 136/2] = [256, 68, 68]
|
48 |
+
block4: # [256, 136/2, 136/2] = [256, 68, 68]
|
49 |
+
all_padding: false
|
50 |
+
in_channels: 256
|
51 |
+
maxpool: true
|
52 |
+
n_layers: 2
|
53 |
+
out_channels: 512 # [512, 64/2, 64/2] = [512, 32, 32]
|
54 |
+
block5: # [512, 64/2, 64/2] = [512, 32, 32]
|
55 |
+
all_padding: false
|
56 |
+
in_channels: 512
|
57 |
+
maxpool: false
|
58 |
+
n_layers: 2
|
59 |
+
out_channels: 1024 # [1024, 28, 28]
|
60 |
+
nclasses: 2
|
src/models/unet/config/resnet_config.yml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original UNet Paper Configuration
|
2 |
+
# Input shape [1, 572, 572]
|
3 |
+
# Output shape [64, 388, 388]
|
4 |
+
decoder_config:
|
5 |
+
block4: # [2048, 16, 16]
|
6 |
+
in_channels: 2048
|
7 |
+
kernel_size: 2
|
8 |
+
out_channels: 1024
|
9 |
+
padding: [0, 0]
|
10 |
+
stride: 2 # [1024, 28, 28]
|
11 |
+
block3: # [1024, 28, 28]
|
12 |
+
in_channels: 1024
|
13 |
+
kernel_size: 2
|
14 |
+
out_channels: 512
|
15 |
+
padding: [0, 0]
|
16 |
+
stride: 2 # [512, 52, 52]
|
17 |
+
block2: # [512, 52, 52]
|
18 |
+
in_channels: 512
|
19 |
+
kernel_size: 2
|
20 |
+
out_channels: 128
|
21 |
+
padding: [0, 0]
|
22 |
+
stride: 2 # [256, 100, 100]
|
23 |
+
block1: # [256, 100, 100]
|
24 |
+
in_channels: 128
|
25 |
+
kernel_size: 2
|
26 |
+
out_channels: 64
|
27 |
+
padding: [0, 0]
|
28 |
+
stride: 2 # [128, 196, 196]
|
29 |
+
nclasses: 1
|
30 |
+
input_size: [224, 224]
|
31 |
+
mean: [0.485, 0.456, 0.406]
|
32 |
+
std: [0.229, 0.224, 0.225]
|
src/models/unet/decoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .decoder import Decoder as CustomDecoder
|
src/models/unet/decoder/decoder.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class DecoderLayer(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0]
|
8 |
+
):
|
9 |
+
super(DecoderLayer, self).__init__()
|
10 |
+
self.up_conv = nn.ConvTranspose2d(
|
11 |
+
in_channels=in_channels,
|
12 |
+
out_channels=in_channels // 2,
|
13 |
+
kernel_size=kernel_size,
|
14 |
+
stride=stride,
|
15 |
+
padding=padding[0],
|
16 |
+
)
|
17 |
+
|
18 |
+
self.bn1 = nn.BatchNorm2d(in_channels)
|
19 |
+
|
20 |
+
self.conv = nn.Sequential(
|
21 |
+
*[
|
22 |
+
self._conv_relu_layer(
|
23 |
+
in_channels=in_channels if i == 0 else out_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
padding=padding[1],
|
26 |
+
)
|
27 |
+
for i in range(2)
|
28 |
+
]
|
29 |
+
)
|
30 |
+
|
31 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
32 |
+
return nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
in_channels=in_channels,
|
35 |
+
out_channels=out_channels,
|
36 |
+
kernel_size=3,
|
37 |
+
padding=padding,
|
38 |
+
),
|
39 |
+
nn.ReLU(),
|
40 |
+
nn.BatchNorm2d(out_channels),
|
41 |
+
)
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def crop_cat(x, encoder_output):
|
45 |
+
delta = (encoder_output.shape[-1] - x.shape[-1]) // 2
|
46 |
+
encoder_output = encoder_output[
|
47 |
+
:, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1]
|
48 |
+
]
|
49 |
+
return torch.cat((encoder_output, x), dim=1)
|
50 |
+
|
51 |
+
def forward(self, x, encoder_output):
|
52 |
+
x = self.crop_cat(self.up_conv(x), encoder_output)
|
53 |
+
x = self.bn1(x)
|
54 |
+
return self.conv(x)
|
55 |
+
|
56 |
+
|
57 |
+
class Decoder(nn.Module):
|
58 |
+
def __init__(self, config):
|
59 |
+
super(Decoder, self).__init__()
|
60 |
+
self.decoder = nn.ModuleDict(
|
61 |
+
{
|
62 |
+
name: DecoderLayer(
|
63 |
+
in_channels=block["in_channels"],
|
64 |
+
out_channels=block["out_channels"],
|
65 |
+
kernel_size=block["kernel_size"],
|
66 |
+
stride=block["stride"],
|
67 |
+
padding=block["padding"],
|
68 |
+
)
|
69 |
+
for name, block in config.items()
|
70 |
+
}
|
71 |
+
)
|
72 |
+
|
73 |
+
def forward(self, x, encoder_output):
|
74 |
+
for name, block in self.decoder.items():
|
75 |
+
x = block(x, encoder_output[name])
|
76 |
+
return x
|
src/models/unet/encoder/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .encoder import Encoder as CustomEncoder
|
2 |
+
from .resnet import Encoder as ResnetEncoder
|
src/models/unet/encoder/encoder.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
"""
|
5 |
+
downsampling blocks
|
6 |
+
(first half of the 'U' in UNet)
|
7 |
+
[ENCODER]
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
class EncoderLayer(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
in_channels=1,
|
15 |
+
out_channels=64,
|
16 |
+
n_layers=2,
|
17 |
+
all_padding=False,
|
18 |
+
maxpool=True,
|
19 |
+
):
|
20 |
+
super(EncoderLayer, self).__init__()
|
21 |
+
|
22 |
+
f_in_channel = lambda layer: in_channels if layer == 0 else out_channels
|
23 |
+
f_padding = lambda layer: 1 if layer >= 2 or all_padding else 0
|
24 |
+
|
25 |
+
self.layer = nn.Sequential(
|
26 |
+
*[
|
27 |
+
self._conv_relu_layer(
|
28 |
+
in_channels=f_in_channel(i),
|
29 |
+
out_channels=out_channels,
|
30 |
+
padding=f_padding(i),
|
31 |
+
)
|
32 |
+
for i in range(n_layers)
|
33 |
+
]
|
34 |
+
)
|
35 |
+
self.maxpool = maxpool
|
36 |
+
|
37 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
38 |
+
return nn.Sequential(
|
39 |
+
nn.Conv2d(
|
40 |
+
in_channels=in_channels,
|
41 |
+
out_channels=out_channels,
|
42 |
+
kernel_size=3,
|
43 |
+
padding=padding,
|
44 |
+
),
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.BatchNorm2d(out_channels),
|
47 |
+
)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.layer(x)
|
51 |
+
|
52 |
+
|
53 |
+
class Encoder(nn.Module):
|
54 |
+
def __init__(self, config):
|
55 |
+
super(Encoder, self).__init__()
|
56 |
+
self.encoder = nn.ModuleDict(
|
57 |
+
{
|
58 |
+
name: EncoderLayer(
|
59 |
+
in_channels=block["in_channels"],
|
60 |
+
out_channels=block["out_channels"],
|
61 |
+
n_layers=block["n_layers"],
|
62 |
+
all_padding=block["all_padding"],
|
63 |
+
maxpool=block["maxpool"],
|
64 |
+
)
|
65 |
+
for name, block in config.items()
|
66 |
+
}
|
67 |
+
)
|
68 |
+
self.maxpool = nn.MaxPool2d(2)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
output = dict()
|
72 |
+
|
73 |
+
for i, (block_name, block) in enumerate(self.encoder.items()):
|
74 |
+
x = block(x)
|
75 |
+
output[block_name] = x
|
76 |
+
|
77 |
+
if block.maxpool:
|
78 |
+
x = self.maxpool(x)
|
79 |
+
|
80 |
+
return x, output
|
src/models/unet/encoder/resnet.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision.models import resnet50, ResNet50_Weights
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class Encoder(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(Encoder, self).__init__()
|
8 |
+
resnet = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
|
9 |
+
|
10 |
+
for param in resnet.parameters():
|
11 |
+
param.requires_grad_(False)
|
12 |
+
|
13 |
+
self.stages = nn.ModuleDict(
|
14 |
+
{
|
15 |
+
"block1": nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu),
|
16 |
+
"block2": nn.Sequential(resnet.maxpool, resnet.layer1),
|
17 |
+
"block3": resnet.layer2,
|
18 |
+
"block4": resnet.layer3,
|
19 |
+
"block5": resnet.layer4,
|
20 |
+
}
|
21 |
+
)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
stages = {}
|
25 |
+
|
26 |
+
for name, stage in self.stages.items():
|
27 |
+
x = stage(x)
|
28 |
+
stages[name] = x
|
29 |
+
|
30 |
+
return x, stages
|
src/models/unet/example/model_sample.ipynb
ADDED
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "310eb987-37b7-4620-b533-089644fbb440",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import torch\n",
|
11 |
+
"import torch.functional as F\n",
|
12 |
+
"import torch.nn as nn\n",
|
13 |
+
"import yaml\n",
|
14 |
+
"from easydict import EasyDict\n",
|
15 |
+
"from torchinfo import summary"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 2,
|
21 |
+
"id": "f8cff897-df8f-4e6d-893b-321805699e1b",
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"config_path = \"./config/paper_config.yml\"\n",
|
26 |
+
"\n",
|
27 |
+
"with open(config_path, \"r\") as file:\n",
|
28 |
+
" yaml_data = yaml.safe_load(file)\n",
|
29 |
+
"\n",
|
30 |
+
"config = EasyDict(yaml_data)"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "markdown",
|
35 |
+
"id": "ca66846e-d2b4-4dd2-83eb-eee746c26c74",
|
36 |
+
"metadata": {},
|
37 |
+
"source": [
|
38 |
+
"# Encoder "
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 3,
|
44 |
+
"id": "975a6f86-68ff-4fda-b7d8-acf453addade",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"data": {
|
49 |
+
"text/plain": [
|
50 |
+
"==========================================================================================\n",
|
51 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
52 |
+
"==========================================================================================\n",
|
53 |
+
"EncoderLayer [64, 568, 568] --\n",
|
54 |
+
"├─Sequential: 1-1 [64, 568, 568] --\n",
|
55 |
+
"│ └─Sequential: 2-1 [64, 570, 570] --\n",
|
56 |
+
"│ │ └─Conv2d: 3-1 [64, 570, 570] 640\n",
|
57 |
+
"│ │ └─ReLU: 3-2 [64, 570, 570] --\n",
|
58 |
+
"│ └─Sequential: 2-2 [64, 568, 568] --\n",
|
59 |
+
"│ │ └─Conv2d: 3-3 [64, 568, 568] 36,928\n",
|
60 |
+
"│ │ └─ReLU: 3-4 [64, 568, 568] --\n",
|
61 |
+
"==========================================================================================\n",
|
62 |
+
"Total params: 37,568\n",
|
63 |
+
"Trainable params: 37,568\n",
|
64 |
+
"Non-trainable params: 0\n",
|
65 |
+
"Total mult-adds (G): 1.37\n",
|
66 |
+
"==========================================================================================\n",
|
67 |
+
"Input size (MB): 1.31\n",
|
68 |
+
"Forward/backward pass size (MB): 331.53\n",
|
69 |
+
"Params size (MB): 0.15\n",
|
70 |
+
"Estimated Total Size (MB): 332.99\n",
|
71 |
+
"=========================================================================================="
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"execution_count": 3,
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "execute_result"
|
77 |
+
}
|
78 |
+
],
|
79 |
+
"source": [
|
80 |
+
"\"\"\"\n",
|
81 |
+
"downsampling blocks \n",
|
82 |
+
"(first half of the 'U' in UNet) \n",
|
83 |
+
"[ENCODER]\n",
|
84 |
+
"\"\"\"\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"class EncoderLayer(nn.Module):\n",
|
88 |
+
" def __init__(\n",
|
89 |
+
" self,\n",
|
90 |
+
" in_channels=1,\n",
|
91 |
+
" out_channels=64,\n",
|
92 |
+
" n_layers=2,\n",
|
93 |
+
" all_padding=False,\n",
|
94 |
+
" maxpool=True,\n",
|
95 |
+
" ):\n",
|
96 |
+
" super(EncoderLayer, self).__init__()\n",
|
97 |
+
"\n",
|
98 |
+
" f_in_channel = lambda layer: in_channels if layer == 0 else out_channels\n",
|
99 |
+
" f_padding = lambda layer: 1 if layer >= 2 or all_padding else 0\n",
|
100 |
+
"\n",
|
101 |
+
" self.layer = nn.Sequential(\n",
|
102 |
+
" *[\n",
|
103 |
+
" self._conv_relu_layer(\n",
|
104 |
+
" in_channels=f_in_channel(i),\n",
|
105 |
+
" out_channels=out_channels,\n",
|
106 |
+
" padding=f_padding(i),\n",
|
107 |
+
" )\n",
|
108 |
+
" for i in range(n_layers)\n",
|
109 |
+
" ]\n",
|
110 |
+
" )\n",
|
111 |
+
" self.maxpool = maxpool\n",
|
112 |
+
"\n",
|
113 |
+
" def _conv_relu_layer(self, in_channels, out_channels, padding=0):\n",
|
114 |
+
" return nn.Sequential(\n",
|
115 |
+
" nn.Conv2d(\n",
|
116 |
+
" in_channels=in_channels,\n",
|
117 |
+
" out_channels=out_channels,\n",
|
118 |
+
" kernel_size=3,\n",
|
119 |
+
" padding=padding,\n",
|
120 |
+
" ),\n",
|
121 |
+
" nn.ReLU(),\n",
|
122 |
+
" )\n",
|
123 |
+
"\n",
|
124 |
+
" def forward(self, x):\n",
|
125 |
+
" return self.layer(x)\n",
|
126 |
+
"\n",
|
127 |
+
"\n",
|
128 |
+
"summary(\n",
|
129 |
+
" EncoderLayer(in_channels=1, out_channels=64, n_layers=2, all_padding=False).cuda(),\n",
|
130 |
+
" input_size=(1, 572, 572),\n",
|
131 |
+
")"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 4,
|
137 |
+
"id": "4eb7eedd-6530-44e2-9486-fbd8f39fd0ad",
|
138 |
+
"metadata": {},
|
139 |
+
"outputs": [
|
140 |
+
{
|
141 |
+
"data": {
|
142 |
+
"text/plain": [
|
143 |
+
"==========================================================================================\n",
|
144 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
145 |
+
"==========================================================================================\n",
|
146 |
+
"Encoder [1024, 28, 28] --\n",
|
147 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
148 |
+
"│ └─EncoderLayer: 2-1 [64, 568, 568] --\n",
|
149 |
+
"│ │ └─Sequential: 3-1 [64, 568, 568] 37,568\n",
|
150 |
+
"├─MaxPool2d: 1-2 [64, 284, 284] --\n",
|
151 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
152 |
+
"│ └─EncoderLayer: 2-2 [128, 280, 280] --\n",
|
153 |
+
"│ │ └─Sequential: 3-2 [128, 280, 280] 221,440\n",
|
154 |
+
"├─MaxPool2d: 1-4 [128, 140, 140] --\n",
|
155 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
156 |
+
"│ └─EncoderLayer: 2-3 [256, 136, 136] --\n",
|
157 |
+
"│ │ └─Sequential: 3-3 [256, 136, 136] 885,248\n",
|
158 |
+
"├─MaxPool2d: 1-6 [256, 68, 68] --\n",
|
159 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
160 |
+
"│ └─EncoderLayer: 2-4 [512, 64, 64] --\n",
|
161 |
+
"│ │ └─Sequential: 3-4 [512, 64, 64] 3,539,968\n",
|
162 |
+
"├─MaxPool2d: 1-8 [512, 32, 32] --\n",
|
163 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
164 |
+
"│ └─EncoderLayer: 2-5 [512, 28, 28] --\n",
|
165 |
+
"│ │ └─Sequential: 3-5 [512, 28, 28] 4,719,616\n",
|
166 |
+
"│ └─EncoderLayer: 2-6 [1024, 28, 28] --\n",
|
167 |
+
"│ │ └─Sequential: 3-6 [1024, 28, 28] 14,157,824\n",
|
168 |
+
"==========================================================================================\n",
|
169 |
+
"Total params: 23,561,664\n",
|
170 |
+
"Trainable params: 23,561,664\n",
|
171 |
+
"Non-trainable params: 0\n",
|
172 |
+
"Total mult-adds (G): 633.51\n",
|
173 |
+
"==========================================================================================\n",
|
174 |
+
"Input size (MB): 1.31\n",
|
175 |
+
"Forward/backward pass size (MB): 624.49\n",
|
176 |
+
"Params size (MB): 94.25\n",
|
177 |
+
"Estimated Total Size (MB): 720.05\n",
|
178 |
+
"=========================================================================================="
|
179 |
+
]
|
180 |
+
},
|
181 |
+
"execution_count": 4,
|
182 |
+
"metadata": {},
|
183 |
+
"output_type": "execute_result"
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"class Encoder(nn.Module):\n",
|
188 |
+
" def __init__(self, config):\n",
|
189 |
+
" super(Encoder, self).__init__()\n",
|
190 |
+
" self.encoder = nn.ModuleDict(\n",
|
191 |
+
" {\n",
|
192 |
+
" name: EncoderLayer(\n",
|
193 |
+
" in_channels=block[\"in_channels\"],\n",
|
194 |
+
" out_channels=block[\"out_channels\"],\n",
|
195 |
+
" n_layers=block[\"n_layers\"],\n",
|
196 |
+
" all_padding=block[\"all_padding\"],\n",
|
197 |
+
" maxpool=block[\"maxpool\"],\n",
|
198 |
+
" )\n",
|
199 |
+
" for name, block in config.items()\n",
|
200 |
+
" }\n",
|
201 |
+
" )\n",
|
202 |
+
" self.maxpool = nn.MaxPool2d(2)\n",
|
203 |
+
"\n",
|
204 |
+
" def forward(self, x):\n",
|
205 |
+
" output = dict()\n",
|
206 |
+
"\n",
|
207 |
+
" for i, (block_name, block) in enumerate(self.encoder.items()):\n",
|
208 |
+
" x = block(x)\n",
|
209 |
+
" output[block_name] = x\n",
|
210 |
+
"\n",
|
211 |
+
" if block.maxpool:\n",
|
212 |
+
" x = self.maxpool(x)\n",
|
213 |
+
"\n",
|
214 |
+
" return x, output\n",
|
215 |
+
"\n",
|
216 |
+
"\n",
|
217 |
+
"summary(\n",
|
218 |
+
" Encoder(config.encoder_config).cuda(),\n",
|
219 |
+
" input_size=(1, 572, 572),\n",
|
220 |
+
")"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "markdown",
|
225 |
+
"id": "a7ad06cb-61a2-4a66-ba58-f29d402a81f2",
|
226 |
+
"metadata": {},
|
227 |
+
"source": [
|
228 |
+
"# Decoder"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": 5,
|
234 |
+
"id": "735322d0-0dc3-4137-b906-ac7e54c43a79",
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [
|
237 |
+
{
|
238 |
+
"data": {
|
239 |
+
"text/plain": [
|
240 |
+
"==========================================================================================\n",
|
241 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
242 |
+
"==========================================================================================\n",
|
243 |
+
"DecoderLayer [1, 512, 52, 52] --\n",
|
244 |
+
"├─ConvTranspose2d: 1-1 [1, 512, 56, 56] 2,097,664\n",
|
245 |
+
"├─Sequential: 1-2 [1, 512, 52, 52] --\n",
|
246 |
+
"│ ���─Sequential: 2-1 [1, 512, 54, 54] --\n",
|
247 |
+
"│ │ └─Conv2d: 3-1 [1, 512, 54, 54] 4,719,104\n",
|
248 |
+
"│ │ └─ReLU: 3-2 [1, 512, 54, 54] --\n",
|
249 |
+
"│ └─Sequential: 2-2 [1, 512, 52, 52] --\n",
|
250 |
+
"│ │ └─Conv2d: 3-3 [1, 512, 52, 52] 2,359,808\n",
|
251 |
+
"│ │ └─ReLU: 3-4 [1, 512, 52, 52] --\n",
|
252 |
+
"==========================================================================================\n",
|
253 |
+
"Total params: 9,176,576\n",
|
254 |
+
"Trainable params: 9,176,576\n",
|
255 |
+
"Non-trainable params: 0\n",
|
256 |
+
"Total mult-adds (G): 26.72\n",
|
257 |
+
"==========================================================================================\n",
|
258 |
+
"Input size (MB): 11.60\n",
|
259 |
+
"Forward/backward pass size (MB): 35.86\n",
|
260 |
+
"Params size (MB): 36.71\n",
|
261 |
+
"Estimated Total Size (MB): 84.17\n",
|
262 |
+
"=========================================================================================="
|
263 |
+
]
|
264 |
+
},
|
265 |
+
"execution_count": 5,
|
266 |
+
"metadata": {},
|
267 |
+
"output_type": "execute_result"
|
268 |
+
}
|
269 |
+
],
|
270 |
+
"source": [
|
271 |
+
"class DecoderLayer(nn.Module):\n",
|
272 |
+
" def __init__(\n",
|
273 |
+
" self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0]\n",
|
274 |
+
" ):\n",
|
275 |
+
" super(DecoderLayer, self).__init__()\n",
|
276 |
+
" self.up_conv = nn.ConvTranspose2d(\n",
|
277 |
+
" in_channels=in_channels,\n",
|
278 |
+
" out_channels=in_channels // 2,\n",
|
279 |
+
" kernel_size=kernel_size,\n",
|
280 |
+
" stride=stride,\n",
|
281 |
+
" padding=padding[0],\n",
|
282 |
+
" )\n",
|
283 |
+
"\n",
|
284 |
+
" self.conv = nn.Sequential(\n",
|
285 |
+
" *[\n",
|
286 |
+
" self._conv_relu_layer(\n",
|
287 |
+
" in_channels=in_channels if i == 0 else out_channels,\n",
|
288 |
+
" out_channels=out_channels,\n",
|
289 |
+
" padding=padding[1],\n",
|
290 |
+
" )\n",
|
291 |
+
" for i in range(2)\n",
|
292 |
+
" ]\n",
|
293 |
+
" )\n",
|
294 |
+
"\n",
|
295 |
+
" def _conv_relu_layer(self, in_channels, out_channels, padding=0):\n",
|
296 |
+
" return nn.Sequential(\n",
|
297 |
+
" nn.Conv2d(\n",
|
298 |
+
" in_channels=in_channels,\n",
|
299 |
+
" out_channels=out_channels,\n",
|
300 |
+
" kernel_size=3,\n",
|
301 |
+
" padding=padding,\n",
|
302 |
+
" ),\n",
|
303 |
+
" nn.ReLU(),\n",
|
304 |
+
" )\n",
|
305 |
+
"\n",
|
306 |
+
" @staticmethod\n",
|
307 |
+
" def crop_cat(x, encoder_output):\n",
|
308 |
+
" delta = (encoder_output.shape[-1] - x.shape[-1]) // 2\n",
|
309 |
+
" encoder_output = encoder_output[\n",
|
310 |
+
" :, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1]\n",
|
311 |
+
" ]\n",
|
312 |
+
" return torch.cat((encoder_output, x), dim=1)\n",
|
313 |
+
"\n",
|
314 |
+
" def forward(self, x, encoder_output):\n",
|
315 |
+
" x = self.crop_cat(self.up_conv(x), encoder_output)\n",
|
316 |
+
" return self.conv(x)\n",
|
317 |
+
"\n",
|
318 |
+
"\n",
|
319 |
+
"# summary\n",
|
320 |
+
"input_data = [torch.rand((1, 1024, 28, 28)), torch.rand((1, 512, 64, 64))]\n",
|
321 |
+
"summary(\n",
|
322 |
+
" DecoderLayer(in_channels=1024, out_channels=512),\n",
|
323 |
+
" input_data=input_data,\n",
|
324 |
+
")"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "code",
|
329 |
+
"execution_count": 6,
|
330 |
+
"id": "3795e85d-ff83-457c-9c12-af6cc6e2830c",
|
331 |
+
"metadata": {},
|
332 |
+
"outputs": [
|
333 |
+
{
|
334 |
+
"data": {
|
335 |
+
"text/plain": [
|
336 |
+
"==========================================================================================\n",
|
337 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
338 |
+
"==========================================================================================\n",
|
339 |
+
"Decoder [1, 64, 388, 388] --\n",
|
340 |
+
"├─ModuleDict: 1-1 -- --\n",
|
341 |
+
"│ └─DecoderLayer: 2-1 [1, 1024, 28, 28] --\n",
|
342 |
+
"│ │ └─ConvTranspose2d: 3-1 [1, 512, 28, 28] 4,719,104\n",
|
343 |
+
"│ │ └─Sequential: 3-2 [1, 1024, 28, 28] 18,876,416\n",
|
344 |
+
"│ └─DecoderLayer: 2-2 [1, 512, 52, 52] --\n",
|
345 |
+
"│ │ └─ConvTranspose2d: 3-3 [1, 512, 56, 56] 2,097,664\n",
|
346 |
+
"│ │ └─Sequential: 3-4 [1, 512, 52, 52] 7,078,912\n",
|
347 |
+
"│ └─DecoderLayer: 2-3 [1, 256, 100, 100] --\n",
|
348 |
+
"│ │ └─ConvTranspose2d: 3-5 [1, 256, 104, 104] 524,544\n",
|
349 |
+
"│ │ └─Sequential: 3-6 [1, 256, 100, 100] 1,769,984\n",
|
350 |
+
"│ └─DecoderLayer: 2-4 [1, 128, 196, 196] --\n",
|
351 |
+
"│ │ └─ConvTranspose2d: 3-7 [1, 128, 200, 200] 131,200\n",
|
352 |
+
"│ │ └─Sequential: 3-8 [1, 128, 196, 196] 442,624\n",
|
353 |
+
"│ └─DecoderLayer: 2-5 [1, 64, 388, 388] --\n",
|
354 |
+
"│ │ └─ConvTranspose2d: 3-9 [1, 64, 392, 392] 32,832\n",
|
355 |
+
"│ │ └─Sequential: 3-10 [1, 64, 388, 388] 110,720\n",
|
356 |
+
"==========================================================================================\n",
|
357 |
+
"Total params: 35,784,000\n",
|
358 |
+
"Trainable params: 35,784,000\n",
|
359 |
+
"Non-trainable params: 0\n",
|
360 |
+
"Total mult-adds (G): 113.38\n",
|
361 |
+
"==========================================================================================\n",
|
362 |
+
"Input size (MB): 158.09\n",
|
363 |
+
"Forward/backward pass size (MB): 469.93\n",
|
364 |
+
"Params size (MB): 143.14\n",
|
365 |
+
"Estimated Total Size (MB): 771.16\n",
|
366 |
+
"=========================================================================================="
|
367 |
+
]
|
368 |
+
},
|
369 |
+
"execution_count": 6,
|
370 |
+
"metadata": {},
|
371 |
+
"output_type": "execute_result"
|
372 |
+
}
|
373 |
+
],
|
374 |
+
"source": [
|
375 |
+
"class Decoder(nn.Module):\n",
|
376 |
+
" def __init__(self, config):\n",
|
377 |
+
" super(Decoder, self).__init__()\n",
|
378 |
+
" self.decoder = nn.ModuleDict(\n",
|
379 |
+
" {\n",
|
380 |
+
" name: DecoderLayer(\n",
|
381 |
+
" in_channels=block[\"in_channels\"],\n",
|
382 |
+
" out_channels=block[\"out_channels\"],\n",
|
383 |
+
" kernel_size=block[\"kernel_size\"],\n",
|
384 |
+
" stride=block[\"stride\"],\n",
|
385 |
+
" padding=block[\"padding\"],\n",
|
386 |
+
" )\n",
|
387 |
+
" for name, block in config.items()\n",
|
388 |
+
" }\n",
|
389 |
+
" )\n",
|
390 |
+
"\n",
|
391 |
+
" def forward(self, x, encoder_output):\n",
|
392 |
+
" for name, block in self.decoder.items():\n",
|
393 |
+
" x = block(x, encoder_output[name])\n",
|
394 |
+
" return x\n",
|
395 |
+
"\n",
|
396 |
+
"\n",
|
397 |
+
"# summary\n",
|
398 |
+
"encoder_input = torch.rand((1, 1, 572, 572), device=\"cuda\")\n",
|
399 |
+
"x, encoder_output = Encoder(config.encoder_config).cuda()(encoder_input)\n",
|
400 |
+
"\n",
|
401 |
+
"input_data = [x, encoder_output]\n",
|
402 |
+
"summary(\n",
|
403 |
+
" Decoder(config.decoder_config).cuda(),\n",
|
404 |
+
" input_data=input_data,\n",
|
405 |
+
")"
|
406 |
+
]
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"cell_type": "markdown",
|
410 |
+
"id": "6cd06e02-abd4-4537-8bce-5a15c4ad4f85",
|
411 |
+
"metadata": {},
|
412 |
+
"source": [
|
413 |
+
"# UNet"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": 7,
|
419 |
+
"id": "24fd0355-3603-4a55-b827-068eda70b78a",
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"data": {
|
424 |
+
"text/plain": [
|
425 |
+
"===============================================================================================\n",
|
426 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
427 |
+
"===============================================================================================\n",
|
428 |
+
"UNet [1, 2, 388, 388] --\n",
|
429 |
+
"├─Encoder: 1-1 [1, 1024, 28, 28] --\n",
|
430 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
431 |
+
"│ │ └─EncoderLayer: 3-1 [1, 64, 568, 568] 37,568\n",
|
432 |
+
"│ └─MaxPool2d: 2-2 [1, 64, 284, 284] --\n",
|
433 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
434 |
+
"│ │ └─EncoderLayer: 3-2 [1, 128, 280, 280] 221,440\n",
|
435 |
+
"│ └─MaxPool2d: 2-4 [1, 128, 140, 140] --\n",
|
436 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
437 |
+
"│ │ └─EncoderLayer: 3-3 [1, 256, 136, 136] 885,248\n",
|
438 |
+
"│ └─MaxPool2d: 2-6 [1, 256, 68, 68] --\n",
|
439 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
440 |
+
"│ │ └─EncoderLayer: 3-4 [1, 512, 64, 64] 3,539,968\n",
|
441 |
+
"│ └─MaxPool2d: 2-8 [1, 512, 32, 32] --\n",
|
442 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
443 |
+
"│ │ └─EncoderLayer: 3-5 [1, 512, 28, 28] 4,719,616\n",
|
444 |
+
"│ │ └─EncoderLayer: 3-6 [1, 1024, 28, 28] 14,157,824\n",
|
445 |
+
"├─Decoder: 1-2 [1, 64, 388, 388] --\n",
|
446 |
+
"│ └─ModuleDict: 2-10 -- --\n",
|
447 |
+
"│ │ └─DecoderLayer: 3-7 [1, 1024, 28, 28] 23,595,520\n",
|
448 |
+
"│ │ └─DecoderLayer: 3-8 [1, 512, 52, 52] 9,176,576\n",
|
449 |
+
"│ │ └─DecoderLayer: 3-9 [1, 256, 100, 100] 2,294,528\n",
|
450 |
+
"│ │ └─DecoderLayer: 3-10 [1, 128, 196, 196] 573,824\n",
|
451 |
+
"│ │ └─DecoderLayer: 3-11 [1, 64, 388, 388] 143,552\n",
|
452 |
+
"├─Conv2d: 1-3 [1, 2, 388, 388] 130\n",
|
453 |
+
"===============================================================================================\n",
|
454 |
+
"Total params: 59,345,794\n",
|
455 |
+
"Trainable params: 59,345,794\n",
|
456 |
+
"Non-trainable params: 0\n",
|
457 |
+
"Total mult-adds (G): 189.38\n",
|
458 |
+
"===============================================================================================\n",
|
459 |
+
"Input size (MB): 1.31\n",
|
460 |
+
"Forward/backward pass size (MB): 1096.83\n",
|
461 |
+
"Params size (MB): 237.38\n",
|
462 |
+
"Estimated Total Size (MB): 1335.52\n",
|
463 |
+
"==============================================================================================="
|
464 |
+
]
|
465 |
+
},
|
466 |
+
"execution_count": 7,
|
467 |
+
"metadata": {},
|
468 |
+
"output_type": "execute_result"
|
469 |
+
}
|
470 |
+
],
|
471 |
+
"source": [
|
472 |
+
"class UNet(nn.Module):\n",
|
473 |
+
" def __init__(self, encoder_config, decoder_config, nclasses):\n",
|
474 |
+
" super(UNet, self).__init__()\n",
|
475 |
+
" self.encoder = Encoder(config=encoder_config)\n",
|
476 |
+
" self.decoder = Decoder(config=decoder_config)\n",
|
477 |
+
"\n",
|
478 |
+
" self.output = nn.Conv2d(\n",
|
479 |
+
" in_channels=decoder_config[\"block1\"][\"out_channels\"],\n",
|
480 |
+
" out_channels=nclasses,\n",
|
481 |
+
" kernel_size=1,\n",
|
482 |
+
" )\n",
|
483 |
+
"\n",
|
484 |
+
" def forward(self, x):\n",
|
485 |
+
" x, encoder_step_output = self.encoder(x)\n",
|
486 |
+
" x = self.decoder(x, encoder_step_output)\n",
|
487 |
+
" return self.output(x)\n",
|
488 |
+
"\n",
|
489 |
+
"\n",
|
490 |
+
"summary(\n",
|
491 |
+
" UNet(\n",
|
492 |
+
" config[\"encoder_config\"], config[\"decoder_config\"], nclasses=config[\"nclasses\"]\n",
|
493 |
+
" ),\n",
|
494 |
+
" input_data=torch.rand((1, 1, 572, 572)),\n",
|
495 |
+
")"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"cell_type": "code",
|
500 |
+
"execution_count": 13,
|
501 |
+
"id": "550824e4-2151-4c0b-8a12-383fa092b4ac",
|
502 |
+
"metadata": {},
|
503 |
+
"outputs": [],
|
504 |
+
"source": [
|
505 |
+
"# # if config is a dict\n",
|
506 |
+
"# with open('custom_config.yml', 'w') as outfile:\n",
|
507 |
+
"# yaml.dump(config, outfile, sort_keys=False)"
|
508 |
+
]
|
509 |
+
}
|
510 |
+
],
|
511 |
+
"metadata": {
|
512 |
+
"kernelspec": {
|
513 |
+
"display_name": "Python 3 (ipykernel)",
|
514 |
+
"language": "python",
|
515 |
+
"name": "python3"
|
516 |
+
},
|
517 |
+
"language_info": {
|
518 |
+
"codemirror_mode": {
|
519 |
+
"name": "ipython",
|
520 |
+
"version": 3
|
521 |
+
},
|
522 |
+
"file_extension": ".py",
|
523 |
+
"mimetype": "text/x-python",
|
524 |
+
"name": "python",
|
525 |
+
"nbconvert_exporter": "python",
|
526 |
+
"pygments_lexer": "ipython3",
|
527 |
+
"version": "3.8.10"
|
528 |
+
}
|
529 |
+
},
|
530 |
+
"nbformat": 4,
|
531 |
+
"nbformat_minor": 5
|
532 |
+
}
|
src/models/unet/resunet.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from .encoder import ResnetEncoder as Encoder
|
3 |
+
from .decoder import CustomDecoder as Decoder
|
4 |
+
|
5 |
+
|
6 |
+
class UNet(nn.Module):
|
7 |
+
def __init__(self, decoder_config, nclasses, input_shape=(224, 224)):
|
8 |
+
super(UNet, self).__init__()
|
9 |
+
self.encoder = Encoder()
|
10 |
+
self.decoder = Decoder(config=decoder_config)
|
11 |
+
|
12 |
+
self.output = nn.Sequential(
|
13 |
+
nn.Conv2d(
|
14 |
+
in_channels=decoder_config["block1"]["out_channels"],
|
15 |
+
out_channels=nclasses,
|
16 |
+
kernel_size=1,
|
17 |
+
),
|
18 |
+
nn.UpsamplingBilinear2d(size=input_shape),
|
19 |
+
)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x, encoder_step_output = self.encoder(x)
|
23 |
+
x = self.decoder(x, encoder_step_output)
|
24 |
+
x = self.output(x)
|
25 |
+
return x
|
26 |
+
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
import torch
|
30 |
+
import yaml
|
31 |
+
from easydict import EasyDict
|
32 |
+
from torchinfo import summary
|
33 |
+
|
34 |
+
# load config
|
35 |
+
config_path = "./config/resnet_config.yml"
|
36 |
+
|
37 |
+
with open(config_path, "r") as file:
|
38 |
+
yaml_data = yaml.safe_load(file)
|
39 |
+
|
40 |
+
config = EasyDict(yaml_data)
|
41 |
+
|
42 |
+
# input shape
|
43 |
+
input_shape = (224, 224)
|
44 |
+
|
45 |
+
# device
|
46 |
+
use_cuda = torch.cuda.is_available()
|
47 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
48 |
+
|
49 |
+
# model definition
|
50 |
+
model = UNet(
|
51 |
+
decoder_config=config["decoder_config"], nclasses=1, input_shape=input_shape
|
52 |
+
).to(device)
|
53 |
+
|
54 |
+
summary(
|
55 |
+
model,
|
56 |
+
input_data=torch.rand((1, 3, input_shape[0], input_shape[1])),
|
57 |
+
device=device,
|
58 |
+
)
|
59 |
+
|
60 |
+
# load weights (if any)
|
61 |
+
model_path = None
|
62 |
+
|
63 |
+
if model_path is not None:
|
64 |
+
checkpoint = torch.load(model_path, map_location=device)
|
65 |
+
model.decoder.load_state_dict(checkpoint["decoder_state_dict"], strict=False)
|
66 |
+
model.output.load_state_dict(checkpoint["output_state_dict"], strict=False)
|
src/run/unet/example/binary_segmentation_resunet.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/run/unet/inference.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import albumentations as A
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import yaml
|
9 |
+
from albumentations.pytorch import ToTensorV2
|
10 |
+
from easydict import EasyDict
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from src.models.unet.resunet import UNet as Model
|
14 |
+
|
15 |
+
|
16 |
+
class ResUnetInfer:
|
17 |
+
def __init__(self, model_path, config_path):
|
18 |
+
use_cuda = torch.cuda.is_available()
|
19 |
+
self.device = torch.device("cuda" if use_cuda else "cpu")
|
20 |
+
|
21 |
+
self.config = self.load_config(config_path=config_path)
|
22 |
+
self.model = self.load_model(model_path=model_path)
|
23 |
+
|
24 |
+
self.transform = A.Compose(
|
25 |
+
[
|
26 |
+
A.Resize(self.config.input_size[0], self.config.input_size[1]),
|
27 |
+
A.Normalize(
|
28 |
+
mean=self.config.mean,
|
29 |
+
std=self.config.std,
|
30 |
+
max_pixel_value=255,
|
31 |
+
),
|
32 |
+
ToTensorV2(),
|
33 |
+
]
|
34 |
+
)
|
35 |
+
|
36 |
+
def load_model(self, model_path):
|
37 |
+
model = Model(
|
38 |
+
decoder_config=self.config.decoder_config, nclasses=self.config.nclasses
|
39 |
+
).to(self.device)
|
40 |
+
|
41 |
+
if os.path.isfile(model_path):
|
42 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
43 |
+
model.decoder.load_state_dict(
|
44 |
+
checkpoint["decoder_state_dict"], strict=False
|
45 |
+
)
|
46 |
+
model.output.load_state_dict(checkpoint["output_state_dict"], strict=False)
|
47 |
+
|
48 |
+
return model
|
49 |
+
|
50 |
+
def load_config(self, config_path):
|
51 |
+
with open(config_path, "r") as file:
|
52 |
+
yaml_data = yaml.safe_load(file)
|
53 |
+
|
54 |
+
return EasyDict(yaml_data)
|
55 |
+
|
56 |
+
def infer(self, image, image_weight=0.01):
|
57 |
+
self.model.eval()
|
58 |
+
input_tensor = self.transform(image=image)["image"].unsqueeze(0)
|
59 |
+
|
60 |
+
# get mask
|
61 |
+
with torch.no_grad():
|
62 |
+
"""
|
63 |
+
output_tensor = [batch, 1, 224, 224]
|
64 |
+
batch = 1
|
65 |
+
"""
|
66 |
+
output_tensor = self.model(input_tensor.to(self.device))
|
67 |
+
|
68 |
+
mask = torch.sigmoid(output_tensor)
|
69 |
+
mask = nn.UpsamplingBilinear2d(size=(image.shape[0], image.shape[1]))(mask)
|
70 |
+
mask = mask.squeeze(0)
|
71 |
+
|
72 |
+
# add zeros for green and blue channels
|
73 |
+
# our mask will be red in colour
|
74 |
+
zero_channels = torch.zeros((2, image.shape[0], image.shape[1]), device=self.device)
|
75 |
+
mask = torch.cat([mask, zero_channels], dim=0)
|
76 |
+
mask = mask.permute(1,2,0).cpu().numpy()
|
77 |
+
mask = np.uint8(255 * mask)
|
78 |
+
|
79 |
+
# overlap image and mask
|
80 |
+
mask = (1 - image_weight) * mask + image_weight * image
|
81 |
+
mask = mask / np.max(mask)
|
82 |
+
return np.uint8(255 * mask)
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def load_image_as_array(image_path):
|
86 |
+
# Load a PIL image
|
87 |
+
pil_image = Image.open(image_path)
|
88 |
+
|
89 |
+
# Convert PIL image to NumPy array
|
90 |
+
return np.array(pil_image.convert("RGB"))
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def plot_array(array: np.array, figsize=(10, 10)):
|
94 |
+
plt.figure(figsize=figsize)
|
95 |
+
plt.imshow(array)
|
96 |
+
plt.show()
|
97 |
+
|
98 |
+
@staticmethod
|
99 |
+
def save_numpy_as_image(numpy_array, image_path):
|
100 |
+
"""
|
101 |
+
Saves a NumPy array as an image.
|
102 |
+
Args:
|
103 |
+
numpy_array (numpy.ndarray): The NumPy array to be saved as an image.
|
104 |
+
image_path (str): The path where the image will be saved.
|
105 |
+
"""
|
106 |
+
# Convert the NumPy array to a PIL image
|
107 |
+
image = Image.fromarray(numpy_array)
|
108 |
+
|
109 |
+
# Save the PIL image to the specified path
|
110 |
+
image.save(image_path)
|
111 |
+
|
src/unet/__init__.py
ADDED
File without changes
|
src/unet/config/carvana_config.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Input (1, 512, 512)
|
2 |
+
# Output (64, 512, 512)
|
3 |
+
decoder_config:
|
4 |
+
block5: # (1024, 32, 32)
|
5 |
+
in_channels: 1024
|
6 |
+
kernel_size: 3
|
7 |
+
out_channels: 1024
|
8 |
+
padding:
|
9 |
+
- 1
|
10 |
+
- 1
|
11 |
+
stride: 1 # (1024, 32, 32)
|
12 |
+
block4: # (1024, 32, 32)
|
13 |
+
in_channels: 1024
|
14 |
+
kernel_size: 2
|
15 |
+
out_channels: 512
|
16 |
+
padding:
|
17 |
+
- 0
|
18 |
+
- 1
|
19 |
+
stride: 2 # (512, 64, 64)
|
20 |
+
block3: # (512, 64, 64)
|
21 |
+
in_channels: 512
|
22 |
+
kernel_size: 2
|
23 |
+
out_channels: 256
|
24 |
+
padding:
|
25 |
+
- 0
|
26 |
+
- 1
|
27 |
+
stride: 2 # (256, 128, 128)
|
28 |
+
block2: # (256, 128, 128)
|
29 |
+
in_channels: 256
|
30 |
+
kernel_size: 2
|
31 |
+
out_channels: 128
|
32 |
+
padding:
|
33 |
+
- 0
|
34 |
+
- 1
|
35 |
+
stride: 2 # (128, 256, 256)
|
36 |
+
block1: # (128, 256, 256)
|
37 |
+
in_channels: 128
|
38 |
+
kernel_size: 2
|
39 |
+
out_channels: 64
|
40 |
+
padding:
|
41 |
+
- 0
|
42 |
+
- 1
|
43 |
+
stride: 2 # (64, 512, 512)
|
44 |
+
encoder_config:
|
45 |
+
block1: # (1, 512, 512)
|
46 |
+
all_padding: true
|
47 |
+
in_channels: 1
|
48 |
+
maxpool: true
|
49 |
+
n_layers: 2
|
50 |
+
out_channels: 64 # (64, 256, 256)
|
51 |
+
block2: # (64, 256, 256)
|
52 |
+
all_padding: true
|
53 |
+
in_channels: 64
|
54 |
+
maxpool: true
|
55 |
+
n_layers: 2
|
56 |
+
out_channels: 128 # (128, 128, 128)
|
57 |
+
block3: # (128, 128, 128)
|
58 |
+
all_padding: true
|
59 |
+
in_channels: 128
|
60 |
+
maxpool: true
|
61 |
+
n_layers: 2
|
62 |
+
out_channels: 256 # (256, 64, 64)
|
63 |
+
block4: # (256, 64, 64)
|
64 |
+
all_padding: true
|
65 |
+
in_channels: 256
|
66 |
+
maxpool: true
|
67 |
+
n_layers: 2
|
68 |
+
out_channels: 512 # (512, 32, 32)
|
69 |
+
block5: # (512, 32, 32)
|
70 |
+
all_padding: true
|
71 |
+
in_channels: 512
|
72 |
+
maxpool: false
|
73 |
+
n_layers: 2
|
74 |
+
out_channels: 512 # (512, 32, 32)
|
75 |
+
block6: # (512, 32, 32)
|
76 |
+
all_padding: true
|
77 |
+
in_channels: 512
|
78 |
+
maxpool: false
|
79 |
+
n_layers: 2
|
80 |
+
out_channels: 1024 # (1024, 32, 32)
|
81 |
+
nclasses: 2
|
src/unet/config/paper_config.yml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original UNet Paper Configuration
|
2 |
+
# Input shape [1, 572, 572]
|
3 |
+
# Output shape [64, 388, 388]
|
4 |
+
decoder_config:
|
5 |
+
block4: # [1024, 28, 28]
|
6 |
+
in_channels: 1024
|
7 |
+
kernel_size: 2
|
8 |
+
out_channels: 512
|
9 |
+
padding: [0, 0]
|
10 |
+
stride: 2 # [512, 52, 52]
|
11 |
+
block3: # [512, 52, 52]
|
12 |
+
in_channels: 512
|
13 |
+
kernel_size: 2
|
14 |
+
out_channels: 256
|
15 |
+
padding: [0, 0]
|
16 |
+
stride: 2 # [256, 100, 100]
|
17 |
+
block2: # [256, 100, 100]
|
18 |
+
in_channels: 256
|
19 |
+
kernel_size: 2
|
20 |
+
out_channels: 128
|
21 |
+
padding: [0, 0]
|
22 |
+
stride: 2 # [128, 196, 196]
|
23 |
+
block1: # [128, 196, 196]
|
24 |
+
in_channels: 128
|
25 |
+
kernel_size: 2
|
26 |
+
out_channels: 64
|
27 |
+
padding: [0, 0]
|
28 |
+
stride: 2 # [64, 388, 388]
|
29 |
+
encoder_config:
|
30 |
+
block1: # [1, 572, 572]
|
31 |
+
all_padding: false
|
32 |
+
in_channels: 1
|
33 |
+
maxpool: true
|
34 |
+
n_layers: 2
|
35 |
+
out_channels: 64 # [64, 568/2, 568/2] = [64, 284, 284]
|
36 |
+
block2: # [64, 568/2, 568/2] = [64, 284, 284]
|
37 |
+
all_padding: false
|
38 |
+
in_channels: 64
|
39 |
+
maxpool: true
|
40 |
+
n_layers: 2
|
41 |
+
out_channels: 128 # [128, 280/2, 280/2] = [128, 140, 140]
|
42 |
+
block3: # [128, 280/2, 280/2] = [128, 140, 140]
|
43 |
+
all_padding: false
|
44 |
+
in_channels: 128
|
45 |
+
maxpool: true
|
46 |
+
n_layers: 2
|
47 |
+
out_channels: 256 # [256, 136/2, 136/2] = [256, 68, 68]
|
48 |
+
block4: # [256, 136/2, 136/2] = [256, 68, 68]
|
49 |
+
all_padding: false
|
50 |
+
in_channels: 256
|
51 |
+
maxpool: true
|
52 |
+
n_layers: 2
|
53 |
+
out_channels: 512 # [512, 64/2, 64/2] = [512, 32, 32]
|
54 |
+
block5: # [512, 64/2, 64/2] = [512, 32, 32]
|
55 |
+
all_padding: false
|
56 |
+
in_channels: 512
|
57 |
+
maxpool: false
|
58 |
+
n_layers: 2
|
59 |
+
out_channels: 1024 # [1024, 28, 28]
|
60 |
+
nclasses: 2
|
src/unet/model.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
"""
|
6 |
+
downsampling blocks
|
7 |
+
(first half of the 'U' in UNet)
|
8 |
+
[ENCODER]
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
class EncoderLayer(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
in_channels=1,
|
16 |
+
out_channels=64,
|
17 |
+
n_layers=2,
|
18 |
+
all_padding=False,
|
19 |
+
maxpool=True,
|
20 |
+
):
|
21 |
+
super(EncoderLayer, self).__init__()
|
22 |
+
|
23 |
+
f_in_channel = lambda layer: in_channels if layer == 0 else out_channels
|
24 |
+
f_padding = lambda layer: 1 if layer >= 2 or all_padding else 0
|
25 |
+
|
26 |
+
self.layer = nn.Sequential(
|
27 |
+
*[
|
28 |
+
self._conv_relu_layer(
|
29 |
+
in_channels=f_in_channel(i),
|
30 |
+
out_channels=out_channels,
|
31 |
+
padding=f_padding(i),
|
32 |
+
)
|
33 |
+
for i in range(n_layers)
|
34 |
+
]
|
35 |
+
)
|
36 |
+
self.maxpool = maxpool
|
37 |
+
|
38 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
39 |
+
return nn.Sequential(
|
40 |
+
nn.Conv2d(
|
41 |
+
in_channels=in_channels,
|
42 |
+
out_channels=out_channels,
|
43 |
+
kernel_size=3,
|
44 |
+
padding=padding,
|
45 |
+
),
|
46 |
+
nn.ReLU(),
|
47 |
+
)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.layer(x)
|
51 |
+
|
52 |
+
|
53 |
+
class Encoder(nn.Module):
|
54 |
+
def __init__(self, config):
|
55 |
+
super(Encoder, self).__init__()
|
56 |
+
self.encoder = nn.ModuleDict(
|
57 |
+
{
|
58 |
+
name: EncoderLayer(
|
59 |
+
in_channels=block["in_channels"],
|
60 |
+
out_channels=block["out_channels"],
|
61 |
+
n_layers=block["n_layers"],
|
62 |
+
all_padding=block["all_padding"],
|
63 |
+
maxpool=block["maxpool"],
|
64 |
+
)
|
65 |
+
for name, block in config.items()
|
66 |
+
}
|
67 |
+
)
|
68 |
+
self.maxpool = nn.MaxPool2d(2)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
output = dict()
|
72 |
+
|
73 |
+
for i, (block_name, block) in enumerate(self.encoder.items()):
|
74 |
+
x = block(x)
|
75 |
+
output[block_name] = x
|
76 |
+
|
77 |
+
if block.maxpool:
|
78 |
+
x = self.maxpool(x)
|
79 |
+
|
80 |
+
return x, output
|
81 |
+
|
82 |
+
|
83 |
+
"""
|
84 |
+
upsampling blocks
|
85 |
+
(second half of the 'U' in UNet)
|
86 |
+
[DECODER]
|
87 |
+
"""
|
88 |
+
|
89 |
+
|
90 |
+
class DecoderLayer(nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0]
|
93 |
+
):
|
94 |
+
super(DecoderLayer, self).__init__()
|
95 |
+
self.up_conv = nn.ConvTranspose2d(
|
96 |
+
in_channels=in_channels,
|
97 |
+
out_channels=in_channels // 2,
|
98 |
+
kernel_size=kernel_size,
|
99 |
+
stride=stride,
|
100 |
+
padding=padding[0],
|
101 |
+
)
|
102 |
+
|
103 |
+
self.conv = nn.Sequential(
|
104 |
+
*[
|
105 |
+
self._conv_relu_layer(
|
106 |
+
in_channels=in_channels if i == 0 else out_channels,
|
107 |
+
out_channels=out_channels,
|
108 |
+
padding=padding[1],
|
109 |
+
)
|
110 |
+
for i in range(2)
|
111 |
+
]
|
112 |
+
)
|
113 |
+
|
114 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
115 |
+
return nn.Sequential(
|
116 |
+
nn.Conv2d(
|
117 |
+
in_channels=in_channels,
|
118 |
+
out_channels=out_channels,
|
119 |
+
kernel_size=3,
|
120 |
+
padding=padding,
|
121 |
+
),
|
122 |
+
nn.ReLU(),
|
123 |
+
)
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def crop_cat(x, encoder_output):
|
127 |
+
delta = (encoder_output.shape[-1] - x.shape[-1]) // 2
|
128 |
+
encoder_output = encoder_output[
|
129 |
+
:, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1]
|
130 |
+
]
|
131 |
+
return torch.cat((encoder_output, x), dim=1)
|
132 |
+
|
133 |
+
def forward(self, x, encoder_output):
|
134 |
+
x = self.crop_cat(self.up_conv(x), encoder_output)
|
135 |
+
return self.conv(x)
|
136 |
+
|
137 |
+
|
138 |
+
class Decoder(nn.Module):
|
139 |
+
def __init__(self, config):
|
140 |
+
super(Decoder, self).__init__()
|
141 |
+
self.decoder = nn.ModuleDict(
|
142 |
+
{
|
143 |
+
name: DecoderLayer(
|
144 |
+
in_channels=block["in_channels"],
|
145 |
+
out_channels=block["out_channels"],
|
146 |
+
kernel_size=block["kernel_size"],
|
147 |
+
stride=block["stride"],
|
148 |
+
padding=block["padding"],
|
149 |
+
)
|
150 |
+
for name, block in config.items()
|
151 |
+
}
|
152 |
+
)
|
153 |
+
|
154 |
+
def forward(self, x, encoder_output):
|
155 |
+
for name, block in self.decoder.items():
|
156 |
+
x = block(x, encoder_output[name])
|
157 |
+
return x
|
158 |
+
|
159 |
+
|
160 |
+
class UNet(nn.Module):
|
161 |
+
def __init__(self, encoder_config, decoder_config, nclasses):
|
162 |
+
super(UNet, self).__init__()
|
163 |
+
self.encoder = Encoder(config=encoder_config)
|
164 |
+
self.decoder = Decoder(config=decoder_config)
|
165 |
+
|
166 |
+
self.output = nn.Conv2d(
|
167 |
+
in_channels=decoder_config["block1"]["out_channels"],
|
168 |
+
out_channels=nclasses,
|
169 |
+
kernel_size=1,
|
170 |
+
)
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
x, encoder_step_output = self.encoder(x)
|
174 |
+
x = self.decoder(x, encoder_step_output)
|
175 |
+
return self.output(x)
|