import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, FineGrainedFP8Config import torch import time import base64 st.set_page_config(page_title="LIA Demo", layout="wide") st.markdown("

Ask LeoNardo!

", unsafe_allow_html=True) # Load both GIFs in base64 format def load_gif_base64(path): with open(path, "rb") as f: return base64.b64encode(f.read()).decode("utf-8") # Placeholder for GIF HTML gif_html = st.empty() caption = st.empty() gif_html.markdown( f"
", unsafe_allow_html=True, ) @st.cache_resource def load_model(): # model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" # model_id = "deepseek-ai/deepseek-llm-7b-chat" # model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" model_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, # device_map=None, # torch_dtype=torch.float32 device_map="auto", torch_dtype=torch.float16, # quantization_config=quantization_config, # attn_implementation="flash_attention_2", trust_remote_code = True ) # model.to("cpu") return tokenizer, model tokenizer, model = load_model() prompt = st.text_area("Enter your prompt:", "What company is Leonardo S.p.A.?") # Example prompt selector # examples = { # "🧠 Summary": "Summarize the history of AI in 5 bullet points.", # "💻 Code": "Write a Python function to sort a list using bubble sort.", # "📜 Poem": "Write a haiku about large language models.", # "🤖 Explain": "Explain what a transformer is in simple terms.", # "🔍 Fact": "Who won the FIFA World Cup in 2022?" # } # selected_example = st.selectbox("Choose a Gemma to consult:", list(examples.keys()) + ["✍️ Custom input"]) # Add before generation # col1, col2, col3 = st.columns(3) # with col1: # temperature = st.slider("Temperature", 0.1, 1.5, 1.0) # with col2: # max_tokens = st.slider("Max tokens", 50, 500, 100) # with col3: # top_p = st.slider("Top-p (nucleus sampling)", 0.1, 1.0, 0.95) # if selected_example != "✍️ Custom input": # prompt = examples[selected_example] # else: # prompt = st.text_area("Enter your prompt:") if st.button("Generate"): # Swap to rotating GIF # gif_html.markdown( # f"
", # unsafe_allow_html=True, # ) gif_html.markdown( f"
", unsafe_allow_html=True, ) caption.markdown("

LeoNardo is thinking... 🌀

", unsafe_allow_html=True) # Generate text inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, # max_new_tokens=100, max_new_tokens=512, do_sample=True, temperature=0.6, top_p=0.95, top_k=50, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id ) # Back to still # gif_html.markdown( # f"
", # unsafe_allow_html=True, # ) gif_html.markdown( f"
", unsafe_allow_html=True, ) caption.empty() decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) # Set up placeholder for streaming effect output_placeholder = st.empty() streamed_text = "" for word in decoded_output.split(" "): streamed_text += word + " " output_placeholder.markdown("### ✨ Output:\n\n" + streamed_text + "▌") # slight delay time.sleep(0.03) # Final cleanup (remove blinking cursor) output_placeholder.markdown("### ✨ Output:\n\n" + streamed_text)