import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, FineGrainedFP8Config
import torch
import time
import base64
st.set_page_config(page_title="LIA Demo", layout="wide")
st.markdown("
Ask LeoNardo!
", unsafe_allow_html=True)
# Load both GIFs in base64 format
def load_gif_base64(path):
with open(path, "rb") as f:
return base64.b64encode(f.read()).decode("utf-8")
# Placeholder for GIF HTML
gif_html = st.empty()
caption = st.empty()
gif_html.markdown(
f"",
unsafe_allow_html=True,
)
@st.cache_resource
def load_model():
# model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
# model_id = "deepseek-ai/deepseek-llm-7b-chat"
# model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
model_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
# device_map=None,
# torch_dtype=torch.float32
device_map="auto",
torch_dtype=torch.float16,
# quantization_config=quantization_config,
# attn_implementation="flash_attention_2",
trust_remote_code = True
)
# model.to("cpu")
return tokenizer, model
tokenizer, model = load_model()
prompt = st.text_area("Enter your prompt:", "What company is Leonardo S.p.A.?")
# Example prompt selector
# examples = {
# "🧠 Summary": "Summarize the history of AI in 5 bullet points.",
# "💻 Code": "Write a Python function to sort a list using bubble sort.",
# "📜 Poem": "Write a haiku about large language models.",
# "🤖 Explain": "Explain what a transformer is in simple terms.",
# "🔍 Fact": "Who won the FIFA World Cup in 2022?"
# }
# selected_example = st.selectbox("Choose a Gemma to consult:", list(examples.keys()) + ["✍️ Custom input"])
# Add before generation
# col1, col2, col3 = st.columns(3)
# with col1:
# temperature = st.slider("Temperature", 0.1, 1.5, 1.0)
# with col2:
# max_tokens = st.slider("Max tokens", 50, 500, 100)
# with col3:
# top_p = st.slider("Top-p (nucleus sampling)", 0.1, 1.0, 0.95)
# if selected_example != "✍️ Custom input":
# prompt = examples[selected_example]
# else:
# prompt = st.text_area("Enter your prompt:")
if st.button("Generate"):
# Swap to rotating GIF
# gif_html.markdown(
# f"",
# unsafe_allow_html=True,
# )
gif_html.markdown(
f"",
unsafe_allow_html=True,
)
caption.markdown("LeoNardo is thinking... 🌀
", unsafe_allow_html=True)
# Generate text
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate( **inputs,
# max_new_tokens=100,
max_new_tokens=512,
do_sample=True,
temperature=0.6,
top_p=0.95,
top_k=50,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id
)
# Back to still
# gif_html.markdown(
# f"",
# unsafe_allow_html=True,
# )
gif_html.markdown(
f"",
unsafe_allow_html=True,
)
caption.empty()
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Set up placeholder for streaming effect
output_placeholder = st.empty()
streamed_text = ""
for word in decoded_output.split(" "):
streamed_text += word + " "
output_placeholder.markdown("### ✨ Output:\n\n" + streamed_text + "▌")
# slight delay
time.sleep(0.03)
# Final cleanup (remove blinking cursor)
output_placeholder.markdown("### ✨ Output:\n\n" + streamed_text)