import gradio as gr from transformers import pipeline # Load your Hugging Face model # pipe = pipeline("text-classification", model="davidgaofc/TechDebtClassifier") # Replace 'gpt2' with your model def pipe(temp, temp2): return temp def predict(input_text): # Generate output using the model output = pipe(input_text, max_length=2000) # Adjust parameters as needed return output[0]['generated_text'] # Create the Gradio interface interface = gr.Interface(fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Type something here..."), outputs='text', title="Hugging Face Model Inference", description="Type in some text and see how the model responds!") if __name__ == "__main__": interface.launch()