#!/bin/bash # =================================== # # Experiment configuration # # =================================== # # ======== GAN Type / Corpus ======== # gan="stylegan2_afhqdog512" stylegan_space="W+" stylegan_layer=11 corpus="dogs" # ==== Latent Support Sets (LSS) ==== # num_latent_support_dipoles=64 min_shift_magnitude=0.1 max_shift_magnitude=0.2 lss_beta=0.5 # ==== Corpus Support Sets (CSS) ==== # linear=false styleclip_like=false loss="contrastive" temperature=0.07 css_beta=0.5 # ============ Training ============= # batch_size=4 max_iter=20000 # =================================== # # Run training script linear_text="" if $linear ; then linear_text="--linear" fi styleclip="" if $styleclip_like ; then styleclip="--styleclip" fi python train.py --gan=${gan} \ --truncation=0.7 \ --stylegan-space=${stylegan_space} \ --stylegan-layer=${stylegan_layer} \ --corpus=${corpus} \ --num-latent-support-dipoles=${num_latent_support_dipoles} \ --lss-beta=${lss_beta} \ --loss=${loss} \ --temperature=${temperature} \ --css-beta=${css_beta} \ ${linear_text} \ ${styleclip} \ --min-shift-magnitude=${min_shift_magnitude} \ --max-shift-magnitude=${max_shift_magnitude} \ --batch-size=${batch_size} \ --max-iter=${max_iter} \ --log-freq=10 \ --ckp-freq=100