import torch import torch.nn.functional as F import os import sys import cv2 import random import datetime import math import argparse import numpy as np import scipy.io as sio import zipfile from .net_s3fd import s3fd from .bbox import * import matplotlib.pyplot as plt def detect(net, img, device): img = img - np.array([104, 117, 123]) img = img.transpose(2, 0, 1) img = img.reshape((1,) + img.shape) # if torch.cuda.current_device() == 0: # torch.backends.cudnn.benchmark = True img = torch.from_numpy(img).float().to(device) return batch_detect(net, img, device) def batch_detect(net, img_batch, device): """ Inputs: - img_batch: a torch.Tensor of shape (Batch size, Channels, Height, Width) """ # if torch.cuda.current_device() == 0: # torch.backends.cudnn.benchmark = True BB, CC, HH, WW = img_batch.size() with torch.no_grad(): olist = net(img_batch.float()) # patched uint8_t overflow error for i in range(len(olist) // 2): olist[i * 2] = F.softmax(olist[i * 2], dim=1) bboxlists = [] olist = [oelem.data.cpu() for oelem in olist] for j in range(BB): bboxlist = [] for i in range(len(olist) // 2): ocls, oreg = olist[i * 2], olist[i * 2 + 1] FB, FC, FH, FW = ocls.size() # feature map size stride = 2**(i + 2) # 4,8,16,32,64,128 anchor = stride * 4 poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) for Iindex, hindex, windex in poss: axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride score = ocls[j, 1, hindex, windex] loc = oreg[j, :, hindex, windex].contiguous().view(1, 4) priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]) variances = [0.1, 0.2] box = decode(loc, priors, variances) x1, y1, x2, y2 = box[0] * 1.0 bboxlist.append([x1, y1, x2, y2, score]) bboxlists.append(bboxlist) bboxlists = np.array(bboxlists) if 0 == len(bboxlists): bboxlists = np.zeros((1, 1, 5)) return bboxlists def flip_detect(net, img, device): img = cv2.flip(img, 1) b = detect(net, img, device) bboxlist = np.zeros(b.shape) bboxlist[:, 0] = img.shape[1] - b[:, 2] bboxlist[:, 1] = b[:, 1] bboxlist[:, 2] = img.shape[1] - b[:, 0] bboxlist[:, 3] = b[:, 3] bboxlist[:, 4] = b[:, 4] return bboxlist def pts_to_bb(pts): min_x, min_y = np.min(pts, axis=0) max_x, max_y = np.max(pts, axis=0) return np.array([min_x, min_y, max_x, max_y])