from __future__ import print_function import os import sys import cv2 import random import datetime import time import math import argparse import numpy as np import torch try: from iou import IOU except BaseException: # IOU cython speedup 10x def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2): sa = abs((ax2 - ax1) * (ay2 - ay1)) sb = abs((bx2 - bx1) * (by2 - by1)) x1, y1 = max(ax1, bx1), max(ay1, by1) x2, y2 = min(ax2, bx2), min(ay2, by2) w = x2 - x1 h = y2 - y1 if w < 0 or h < 0: return 0.0 else: return 1.0 * w * h / (sa + sb - w * h) def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh): xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1 dx, dy = (xc - axc) / aww, (yc - ayc) / ahh dw, dh = math.log(ww / aww), math.log(hh / ahh) return dx, dy, dw, dh def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh): xc, yc = dx * aww + axc, dy * ahh + ayc ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2 return x1, y1, x2, y2 def nms(dets, thresh): # print(dets) if 0 == len(dets): return [] x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] # print(x1,x2,y1,y2) areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]]) xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]]) w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1) ovr = w * h / (areas[i] + areas[order[1:]] - w * h) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def encode(matched, priors, variances): """Encode the variances from the priorbox layers into the ground truth boxes we have matched (based on jaccard overlap) with the prior boxes. Args: matched: (tensor) Coords of ground truth for each prior in point-form Shape: [num_priors, 4]. priors: (tensor) Prior boxes in center-offset form Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: encoded boxes (tensor), Shape: [num_priors, 4] """ # dist b/t match center and prior's center g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] # encode variance g_cxcy /= (variances[0] * priors[:, 2:]) # match wh / prior wh g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] g_wh = torch.log(g_wh) / variances[1] # return target for smooth_l1_loss return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat(( priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes