Spaces:
Sleeping
Sleeping
minor algorithm changes
Browse files
app.py
CHANGED
@@ -2,62 +2,42 @@ import cv2
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
|
5 |
-
def extract_outline(image
|
6 |
# Convert to grayscale
|
7 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
8 |
|
9 |
-
#
|
10 |
-
blur_kernel_size = (5
|
11 |
blurred = cv2.GaussianBlur(gray, blur_kernel_size, 0)
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
blockSize=max(block_size, 3) | 1, # Ensure block size is odd
|
18 |
-
C=c_value)
|
19 |
|
20 |
-
#
|
21 |
kernel = np.ones((3, 3), np.uint8)
|
22 |
-
|
23 |
|
24 |
# Apply morphological thinning to get single-pixel-wide lines
|
25 |
-
thinned = cv2.ximgproc.thinning(
|
26 |
|
27 |
-
# Invert colors
|
28 |
skeleton_on_white = cv2.bitwise_not(thinned)
|
29 |
|
30 |
return skeleton_on_white
|
31 |
|
32 |
# Define the Gradio interface
|
33 |
with gr.Blocks() as demo:
|
34 |
-
gr.Markdown("## Basic
|
35 |
-
gr.Markdown("Upload an image
|
36 |
|
37 |
with gr.Row():
|
38 |
image_input = gr.Image(type="numpy", label="Input Image")
|
39 |
-
|
40 |
-
|
41 |
-
blur_slider = gr.Slider(
|
42 |
-
minimum=0, maximum=5, value=2, step=1,
|
43 |
-
label="Gaussian Blur Level",
|
44 |
-
info="Higher values apply more blur to the image."
|
45 |
-
)
|
46 |
-
block_size_slider = gr.Slider(
|
47 |
-
minimum=3, maximum=21, value=11, step=2,
|
48 |
-
label="Adaptive Threshold Block Size",
|
49 |
-
info="Odd values control the size of the blocks for thresholding."
|
50 |
-
)
|
51 |
-
c_value_slider = gr.Slider(
|
52 |
-
minimum=0, maximum=20, value=5, step=1,
|
53 |
-
label="Adaptive Threshold Constant (C)",
|
54 |
-
info="Adjust the constant subtracted from the mean in adaptive thresholding."
|
55 |
-
)
|
56 |
-
|
57 |
-
output_image = gr.Image(type="numpy", label="Output Outline Image")
|
58 |
-
|
59 |
process_button = gr.Button("Generate Outline")
|
60 |
-
process_button.click(fn=extract_outline, inputs=
|
61 |
|
62 |
# Launch the Gradio app
|
63 |
demo.launch()
|
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
|
5 |
+
def extract_outline(image):
|
6 |
# Convert to grayscale
|
7 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
8 |
|
9 |
+
# Set default Gaussian blur kernel size
|
10 |
+
blur_kernel_size = (5, 5)
|
11 |
blurred = cv2.GaussianBlur(gray, blur_kernel_size, 0)
|
12 |
|
13 |
+
# Set default Canny edge detection thresholds
|
14 |
+
lower_threshold = 50
|
15 |
+
upper_threshold = 150
|
16 |
+
edges = cv2.Canny(blurred, lower_threshold, upper_threshold)
|
|
|
|
|
17 |
|
18 |
+
# Morphological operations to close gaps
|
19 |
kernel = np.ones((3, 3), np.uint8)
|
20 |
+
closed_edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
|
21 |
|
22 |
# Apply morphological thinning to get single-pixel-wide lines
|
23 |
+
thinned = cv2.ximgproc.thinning(closed_edges)
|
24 |
|
25 |
+
# Invert colors for white background and black outline
|
26 |
skeleton_on_white = cv2.bitwise_not(thinned)
|
27 |
|
28 |
return skeleton_on_white
|
29 |
|
30 |
# Define the Gradio interface
|
31 |
with gr.Blocks() as demo:
|
32 |
+
gr.Markdown("## Basic Outline Extractor")
|
33 |
+
gr.Markdown("Upload an image to extract its outline with default settings.")
|
34 |
|
35 |
with gr.Row():
|
36 |
image_input = gr.Image(type="numpy", label="Input Image")
|
37 |
+
output_image = gr.Image(type="numpy", label="Output Outline Image")
|
38 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
process_button = gr.Button("Generate Outline")
|
40 |
+
process_button.click(fn=extract_outline, inputs=image_input, outputs=output_image)
|
41 |
|
42 |
# Launch the Gradio app
|
43 |
demo.launch()
|