File size: 1,881 Bytes
eee9fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#RAG method
from PyPDF2 import PdfReader
from langchain.document_loaders import PyPDFLoader
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_core.vectorstores import InMemoryVectorStore
from dotenv import load_dotenv
import os

load_dotenv()
hf_token = os.getenv("HF_TOKEN")

def load_and_chunk_pdfs(directory_path):
    docs = []
    
    for filename in os.listdir(directory_path):
        if filename.endswith(".pdf"):
            file_path = os.path.join(directory_path, filename)
            
            reader = PdfReader(file_path)
            text = ""
            for page in reader.pages:
                text += page.extract_text()
            
            doc = Document(page_content=text, metadata={"source": filename})
            docs.append(doc)
    
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    
    chunked_docs = text_splitter.split_documents(docs)
    return chunked_docs


def create_retriever(documents: list):
    """

    Function to create and return a retriever using HuggingFace Embeddings and InMemory VectorStore.



    Args:

        api_key (str): Hugging Face API key.

        model_name (str): The model name for sentence transformer embeddings.

        documents (list): The list of documents to be embedded and added to the vectorstore.



    Returns:

        retriever: A retriever object to query the vector store.

    """
    embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_token, model_name="sentence-transformers/all-MiniLM-l6-v2")

    vectorstore = InMemoryVectorStore(embedding=embeddings)
    vectorstore.add_documents(documents)

    return vectorstore.as_retriever()