Spaces:
Running
Running
main commit
Browse files- Dockerfile +17 -0
- hate_speech_distilbert/config.json +35 -0
- hate_speech_distilbert/model.safetensors +3 -0
- hate_speech_distilbert/special_tokens_map.json +7 -0
- hate_speech_distilbert/tokenizer.json +0 -0
- hate_speech_distilbert/tokenizer_config.json +56 -0
- hate_speech_distilbert/training_args.bin +3 -0
- hate_speech_distilbert/vocab.txt +0 -0
- main.py +38 -0
- requirements.txt +0 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use Python 3.10.6 image
|
2 |
+
FROM python:3.10
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements file
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Install dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Copy the rest of your application files
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
# Command to run your FastAPI app
|
17 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
hate_speech_distilbert/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert/distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0",
|
13 |
+
"1": "LABEL_1",
|
14 |
+
"2": "LABEL_2"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0,
|
19 |
+
"LABEL_1": 1,
|
20 |
+
"LABEL_2": 2
|
21 |
+
},
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"model_type": "distilbert",
|
24 |
+
"n_heads": 12,
|
25 |
+
"n_layers": 6,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"problem_type": "single_label_classification",
|
28 |
+
"qa_dropout": 0.1,
|
29 |
+
"seq_classif_dropout": 0.2,
|
30 |
+
"sinusoidal_pos_embds": false,
|
31 |
+
"tie_weights_": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.48.2",
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
hate_speech_distilbert/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68032af24f1dddf2e2e69ef3adbd13a0fc225c29faa4a1e9ea84ed8cc5dc90c7
|
3 |
+
size 267835644
|
hate_speech_distilbert/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
hate_speech_distilbert/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hate_speech_distilbert/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
hate_speech_distilbert/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:155a78e5aee35bfe5f0e466f5868f64b857215bb4a148b7d0cdf4555dc3e2d94
|
3 |
+
size 5304
|
hate_speech_distilbert/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
main.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load model and tokenizer
|
7 |
+
MODEL_PATH = "./hate_speech_distilbert" # Update with actual path
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
10 |
+
|
11 |
+
# Label Mapping
|
12 |
+
LABELS = {
|
13 |
+
0: "Hate Speech",
|
14 |
+
1: "Offensive Language",
|
15 |
+
2: "NOT Hate Speech"
|
16 |
+
}
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
class TextRequest(BaseModel):
|
21 |
+
text: str
|
22 |
+
|
23 |
+
@app.get("/")
|
24 |
+
def greet_json():
|
25 |
+
return {"Hello": "World!"}
|
26 |
+
|
27 |
+
@app.post("/predict")
|
28 |
+
async def predict(request: TextRequest):
|
29 |
+
inputs = tokenizer(request.text, return_tensors="pt", truncation=True, padding=True)
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(**inputs)
|
32 |
+
prediction = torch.argmax(outputs.logits, dim=1).item()
|
33 |
+
return {"prediction": LABELS[prediction]}
|
34 |
+
|
35 |
+
# Example Usage
|
36 |
+
if __name__ == "__main__":
|
37 |
+
import uvicorn
|
38 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
Binary file (100 Bytes). View file
|
|