datafreak commited on
Commit
c0921a2
·
verified ·
1 Parent(s): e93c14c

main commit

Browse files
Dockerfile ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use Python 3.10.6 image
2
+ FROM python:3.10
3
+
4
+ # Set the working directory in the container
5
+ WORKDIR /app
6
+
7
+ # Copy the requirements file
8
+ COPY requirements.txt .
9
+
10
+ # Install dependencies
11
+ RUN pip install --no-cache-dir -r requirements.txt
12
+
13
+ # Copy the rest of your application files
14
+ COPY . .
15
+
16
+ # Command to run your FastAPI app
17
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
hate_speech_distilbert/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "LABEL_0",
13
+ "1": "LABEL_1",
14
+ "2": "LABEL_2"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "label2id": {
18
+ "LABEL_0": 0,
19
+ "LABEL_1": 1,
20
+ "LABEL_2": 2
21
+ },
22
+ "max_position_embeddings": 512,
23
+ "model_type": "distilbert",
24
+ "n_heads": 12,
25
+ "n_layers": 6,
26
+ "pad_token_id": 0,
27
+ "problem_type": "single_label_classification",
28
+ "qa_dropout": 0.1,
29
+ "seq_classif_dropout": 0.2,
30
+ "sinusoidal_pos_embds": false,
31
+ "tie_weights_": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.48.2",
34
+ "vocab_size": 30522
35
+ }
hate_speech_distilbert/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68032af24f1dddf2e2e69ef3adbd13a0fc225c29faa4a1e9ea84ed8cc5dc90c7
3
+ size 267835644
hate_speech_distilbert/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
hate_speech_distilbert/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
hate_speech_distilbert/tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
hate_speech_distilbert/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155a78e5aee35bfe5f0e466f5868f64b857215bb4a148b7d0cdf4555dc3e2d94
3
+ size 5304
hate_speech_distilbert/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
main.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import torch
5
+
6
+ # Load model and tokenizer
7
+ MODEL_PATH = "./hate_speech_distilbert" # Update with actual path
8
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
10
+
11
+ # Label Mapping
12
+ LABELS = {
13
+ 0: "Hate Speech",
14
+ 1: "Offensive Language",
15
+ 2: "NOT Hate Speech"
16
+ }
17
+
18
+ app = FastAPI()
19
+
20
+ class TextRequest(BaseModel):
21
+ text: str
22
+
23
+ @app.get("/")
24
+ def greet_json():
25
+ return {"Hello": "World!"}
26
+
27
+ @app.post("/predict")
28
+ async def predict(request: TextRequest):
29
+ inputs = tokenizer(request.text, return_tensors="pt", truncation=True, padding=True)
30
+ with torch.no_grad():
31
+ outputs = model(**inputs)
32
+ prediction = torch.argmax(outputs.logits, dim=1).item()
33
+ return {"prediction": LABELS[prediction]}
34
+
35
+ # Example Usage
36
+ if __name__ == "__main__":
37
+ import uvicorn
38
+ uvicorn.run(app, host="0.0.0.0", port=8000)
requirements.txt ADDED
Binary file (100 Bytes). View file