Spaces:
Sleeping
Sleeping
update utils
Browse files
utils.py
CHANGED
@@ -1,21 +1,14 @@
|
|
1 |
import os
|
2 |
from google.cloud import vision
|
3 |
import re
|
4 |
-
import
|
5 |
-
import
|
|
|
|
|
|
|
|
|
6 |
##
|
7 |
-
|
8 |
-
def get_credentials():
|
9 |
-
creds_json_str = os.getenv("cloud_vision")
|
10 |
-
|
11 |
-
#create temporale file
|
12 |
-
with tempfile.NamedTemporaryFile(mode="w+",delete=False, suffix=".json") as temp:
|
13 |
-
temp.write(creds_json_str) #write the content in json format
|
14 |
-
temp_filename = temp.name
|
15 |
-
|
16 |
-
return temp_filename
|
17 |
-
|
18 |
-
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = get_credentials()
|
19 |
|
20 |
##
|
21 |
def info_new_cni(donnees):
|
@@ -116,14 +109,39 @@ def permis_de_conduite(donnees):
|
|
116 |
""" Extraire les information de permis de conduire"""
|
117 |
|
118 |
informations = {}
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
return informations
|
129 |
|
@@ -161,4 +179,39 @@ def extraire_informations_carte(path, type_de_piece=1):
|
|
161 |
elif type_de_piece == 3:
|
162 |
return permis_de_conduite(donnees)
|
163 |
else :
|
164 |
-
return "Le traitement de ce type de document n'est pas encore pris en charge"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from google.cloud import vision
|
3 |
import re
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import albumentations as A
|
9 |
+
from albumentations.pytorch import ToTensorV2
|
10 |
##
|
11 |
+
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'data/ocr_vision_token.json'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
##
|
14 |
def info_new_cni(donnees):
|
|
|
109 |
""" Extraire les information de permis de conduire"""
|
110 |
|
111 |
informations = {}
|
112 |
+
|
113 |
+
infos = filtrer_elements(donnees)
|
114 |
+
|
115 |
+
nom_pattern = r'Nom\n(.*?)\n'
|
116 |
+
nom = re.search(nom_pattern, '\n'.join(infos))
|
117 |
+
prenom_pattern = r'Prénoms\n(.*?)\n'
|
118 |
+
prenom = re.search(prenom_pattern, '\n'.join(infos))
|
119 |
+
date_lieu_naissance_patern = r'Date et lieu de naissance\n(.*?)\n'
|
120 |
+
date_lieu_naissance = re.search(date_lieu_naissance_patern, '\n'.join(infos))
|
121 |
+
date_lieu_delivrance_patern = r'Date et lieu de délivrance\n(.*?)\n'
|
122 |
+
date_lieu_delivrance = re.search(date_lieu_delivrance_patern, '\n'.join(infos))
|
123 |
+
numero_pattern = r'Numéro du permis de conduire\n(.*?)\n'
|
124 |
+
numero = re.search(numero_pattern, '\n'.join(infos))
|
125 |
+
restriction_pattern = r'Restriction\(s\)\s+(.*?)+(.*)'
|
126 |
+
restriction = re.search(restriction_pattern, ' '.join(infos))
|
127 |
+
|
128 |
+
# Stockage des informations extraites dans un dictionnaire
|
129 |
+
if nom:
|
130 |
+
informations['Nom'] = nom.group(1)
|
131 |
+
|
132 |
+
if prenom :
|
133 |
+
informations['Prenoms'] = prenom.group(1)
|
134 |
+
if date_lieu_naissance :
|
135 |
+
informations['Date_et_lieu_de_naissance'] = date_lieu_naissance.group(1)
|
136 |
+
if date_lieu_naissance :
|
137 |
+
informations['Date_et_lieu_de_délivrance'] = date_lieu_delivrance.group(1)
|
138 |
+
|
139 |
+
informations['Categorie'] = infos[0]
|
140 |
+
if numero:
|
141 |
+
informations['Numéro_du_permis_de_conduire'] = numero.group(1)
|
142 |
+
|
143 |
+
if restriction:
|
144 |
+
informations['Restriction(s)'] = restriction.group(2)
|
145 |
|
146 |
return informations
|
147 |
|
|
|
179 |
elif type_de_piece == 3:
|
180 |
return permis_de_conduite(donnees)
|
181 |
else :
|
182 |
+
return "Le traitement de ce type de document n'est pas encore pris en charge"
|
183 |
+
|
184 |
+
def load_checkpoint(path):
|
185 |
+
print('--> Loading checkpoint')
|
186 |
+
return torch.load(path,map_location=torch.device('cpu'))
|
187 |
+
|
188 |
+
def make_prediction(image_path):
|
189 |
+
|
190 |
+
# define the using of GPU or CPU et background training
|
191 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
192 |
+
## load model
|
193 |
+
model = load_checkpoint("data/model.pth")
|
194 |
+
## transformation
|
195 |
+
test_transforms = A.Compose([
|
196 |
+
A.Resize(height=224, width=224, always_apply=True),
|
197 |
+
A.Normalize(always_apply=True),
|
198 |
+
ToTensorV2(always_apply=True),])
|
199 |
+
|
200 |
+
## read the image
|
201 |
+
image = np.array(Image.open(image_path).convert('RGB'))
|
202 |
+
transformed = test_transforms(image= image)
|
203 |
+
image_transformed = transformed["image"]
|
204 |
+
image_transformed = image_transformed.unsqueeze(0)
|
205 |
+
image_transformed = image_transformed.to(device)
|
206 |
+
|
207 |
+
model.eval()
|
208 |
+
with torch.set_grad_enabled(False):
|
209 |
+
output = model(image_transformed)
|
210 |
+
|
211 |
+
# Post-process predictions
|
212 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
213 |
+
predicted_class = torch.argmax(probabilities).item()
|
214 |
+
proba = float(max(probabilities))
|
215 |
+
|
216 |
+
|
217 |
+
return proba, predicted_class
|