import chainlit as cl from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import StrOutputParser from langchain.schema.runnable import RunnableConfig, RunnablePassthrough from langchain_openai import ChatOpenAI import configs from prompts import prompt from utils import format_docs, process_documents doc_search = process_documents(configs.DOCS_STORAGE_PATH) model = ChatOpenAI(name=configs.CHAT_MODEL, streaming=True) @cl.on_chat_start async def on_chat_start(): retriever = doc_search.as_retriever() runnable = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) cl.user_session.set("runnable", runnable) @cl.on_message async def on_message(message: cl.Message): runnable = cl.user_session.get("runnable") msg = cl.Message(content="") class PostMessageHandler(BaseCallbackHandler): """ Callback handler for handling the retriever and LLM processes. Used to post the sources of the retrieved documents as a Chainlit element. """ def __init__(self, msg: cl.Message): BaseCallbackHandler.__init__(self) self.msg = msg self.sources = set() # To store unique pairs def on_retriever_end(self, documents, *, run_id, parent_run_id, **kwargs): for d in documents: source_page_pair = d.metadata["source"] self.sources.add(source_page_pair) # Add unique pairs to the set def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs): if len(self.sources): sources_text = "\n".join( [f"{source}#page={page}" for source, page in self.sources] ) self.msg.elements.append( cl.Text(name="Sources", content=sources_text, display="inline") ) async with cl.Step(type="run", name="QA Assistant"): async for chunk in runnable.astream( message.content, config=RunnableConfig( callbacks=[cl.LangchainCallbackHandler(), PostMessageHandler(msg)] ), ): await msg.stream_token(chunk) with open(configs.HIISTORY_FILE, "a") as f: f.write(f"""{message.content}[SEP]{msg.content}[END]\n\n""") await msg.send()