import streamlit as st import pickle import json import pandas as pd import numpy as np st.set_page_config( page_title='FIFA 2022', layout='wide', initial_sidebar_state='expanded' ) #Load files with open('list_cat_cols.txt', 'r') as file_1: list_cat_cols = json.load(file_1) with open('list_num_cols.txt', 'r') as file_2: list_num_cols = json.load(file_2) with open('encoder.pkl', 'rb') as file_3: encoder = pickle.load(file_3) with open('scaler.pkl', 'rb') as file_4: scaler = pickle.load(file_4) with open('model_lin_reg.pkl', 'rb') as file_5: model_lin_reg = pickle.load(file_5) def run(): # Membuat Form with st.form(key='form_fifa_2022'): name = st.text_input('Name', value='') age = st.number_input('Age', min_value=16, max_value=60, value=25, step=1, help='Usia Pemain') weight = st.number_input('Weight', min_value=50, max_value=150, value=70) height = st.slider('Height', 50, 250, 170) price = st.number_input('Price', min_value=0, max_value=1000000000, value=0) st.markdown('---') attacking_work_rate = st.selectbox('AttackingWorkRate', ('Low', 'Medium', 'High'), index=0) defensive_work_rate = st.radio('DefensiveWorkRate', ('Low', 'Medium', 'High'), index=1) st.markdown('---') pace = st.number_input('Kecepatan Lari', min_value=0, max_value=100, value=50) shooting = st.number_input('Shooting', min_value=0, max_value=100, value=50) passing = st.number_input('Passing', min_value=0, max_value=100, value=50) dribbling = st.number_input('Dribbling', min_value=0, max_value=100, value=50) defending = st.number_input('Defending', min_value=0, max_value=100, value=50) physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50) submitted = st.form_submit_button('Predict') data_inf = { 'Name': name, 'Age': age, 'Height': height, 'Weight': weight, 'Price': price, 'AttackingWorkRate': attacking_work_rate, 'DefensiveWorkRate': defensive_work_rate, 'PaceTotal': pace, 'ShootingTotal': shooting, 'PassingTotal': passing, 'DribblingTotal': dribbling, 'DefendingTotal': defending, 'PhysicalityTotal': physicality } data_inf = pd.DataFrame([data_inf]) st.dataframe(data_inf) if submitted: #split between categorical and numerical data_inf_num = data_inf[list_num_cols] data_inf_cat = data_inf[list_cat_cols] #Scaling and Encoding data_inf_scaled = scaler.transform(data_inf_num) data_inf_encoded = encoder.transform(data_inf_cat) data_inf_final = np.concatenate([data_inf_scaled, data_inf_encoded], axis = 1) #predict using linreg y_pred_inf = model_lin_reg.predict(data_inf_final) st.write('# Rating : ', str(int(y_pred_inf))) if __name__ == '__main__': run()