from pathlib import Path import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D (x_train, y_train), (x_test, y_test) = mnist.load_data() # Normalize the pixel values to range [0, 1] x_train = x_train / 255.0 x_test = x_test / 255.0 # Reshape the data to 4D (number of samples, height, width, channels) x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) # Create the model model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(128, activation='relu'), Dense(10, activation='softmax') ]) # Compile the model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train the model model.fit(x_train, y_train, epochs=5, batch_size=32, validation_split=0.1) # Save the model path = Path(Path(__file__).parent, 'model.h5') model.save(path)