import tensorflow as tf import gradio as gr model = tf.keras.models.load_model('model.h5') def recognize_digit(image): if image is not None: image = image.reshape((1, 28, 28, 1)) / 255.0 prediction = model.predict(image) return {str(i): float(prediction[0][i]) for i in range(10)} else: return '' iface = gr.Interface( fn=recognize_digit, inputs=gr.Image( shape=(28, 28), image_mode='L', invert_colors=True, source='canvas' ), outputs=gr.Label(num_top_classes=10), live=True ) iface.launch(share=True)