chat_llm_v3 / app.py
daniloedu's picture
Update app.py
264f8d1
raw
history blame
1.9 kB
import os
import requests
import gradio as gr
from dotenv import load_dotenv
load_dotenv()
API_URL_FALCON = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
API_URL_GUANACO = "https://api-inference.huggingface.co/models/timdettmers/guanaco-33b-merged"
API_URL_PYTHIA = "https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
def query(api_url, payload):
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
def respond(message):
response_falcon = query(API_URL_FALCON, {"inputs": message})
response_guanaco = query(API_URL_GUANACO, {"inputs": message})
response_pythia = query(API_URL_PYTHIA, {"inputs": message})
generated_text_falcon = response_falcon[0]['generated_text']
generated_text_guanaco = response_guanaco[0]['generated_text']
generated_text_pythia = response_pythia[0]['generated_text']
return generated_text_falcon, generated_text_guanaco, generated_text_pythia
iface = gr.Interface(
respond,
inputs=gr.inputs.Textbox(label="Prompt for all the different models"),
outputs=[
gr.outputs.Textbox(label="Falcon Response"),
gr.outputs.Textbox(label="Guanaco Response"),
gr.outputs.Textbox(label="Pythia Response")
],
title = "AI Response Aggregator with different LLM models in HugginFace. 🤗",
description="The purpose is to show the interaction of different models so you can make rapid comparisons 🖥️💡",
article="<p>This interface allows users to compare real-time outputs from multiple AI models, namely Falcon, Guanaco, and Pythia. By inputting a prompt, users can observe the different ways each model responds, providing a comprehensive view of their capabilities and styles.</p>"
)
)
iface.launch()