import numpy as np from sklearn.manifold import TSNE import matplotlib.pyplot as plt import pickle data = pickle.load(open("embeddings.pkl", "rb")) embeddings = data["embeddings"] filenames = data["filenames"] thumbs = data["thumbs"] tsne = TSNE(n_components=2) reduced = tsne.fit_transform(embeddings) fig, ax = plt.subplots() # ax.scatter(reduced[:, 0], reduced[:, 1]) delta = 0.5 for i, txt in enumerate(filenames): # ax.annotate(txt, (reduced[i, 0], reduced[i, 1])) x, y = reduced[i] ax.imshow(thumbs[i], extent=[x-delta, x+delta, y-delta, y+delta]) plt.show()