import gradio as gr import os.path import numpy as np from collections import OrderedDict import torch import cv2 from PIL import Image, ImageOps import utils_image as util from network_fbcnn import FBCNN as net import requests import datetime for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']: if os.path.exists(model_path): print(f'{model_path} exists.') else: print("downloading model") url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) r = requests.get(url, allow_redirects=True) open(model_path, 'wb').write(r.content) def inference(input_img, is_gray, input_quality, zoom, x_shift, y_shift): print("datetime:",datetime.datetime.utcnow()) input_img_width, input_img_height = Image.fromarray(input_img).size print("img size:",(input_img_width,input_img_height)) if (input_img_width > 1080) or (input_img_height > 1080): resize_ratio = min(1080/input_img_width, 1080/input_img_height) resized_input = Image.fromarray(input_img).resize((int(input_img_width*resize_ratio)+(input_img_width*resize_ratio < 1), int(input_img_height*resize_ratio)+(input_img_height*resize_ratio < 1)), resample=Image.BICUBIC) input_img = np.array(resized_input) print("input image resized to:", resized_input.size) if is_gray: n_channels = 1 # set 1 for grayscale image, set 3 for color image model_name = 'fbcnn_gray.pth' else: n_channels = 3 # set 1 for grayscale image, set 3 for color image model_name = 'fbcnn_color.pth' nc = [64,128,256,512] nb = 4 input_quality = 100 - input_quality model_path = model_name if os.path.exists(model_path): print(f'{model_path} already exists.') else: print("downloading model") os.makedirs(os.path.dirname(model_path), exist_ok=True) url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) r = requests.get(url, allow_redirects=True) open(model_path, 'wb').write(r.content) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("device:",device) # ---------------------------------------- # load model # ---------------------------------------- print(f'loading model from {model_path}') model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') print("#model.load_state_dict(torch.load(model_path), strict=True)") model.load_state_dict(torch.load(model_path), strict=True) print("#model.eval()") model.eval() print("#for k, v in model.named_parameters()") for k, v in model.named_parameters(): v.requires_grad = False print("#model.to(device)") model = model.to(device) print("Model loaded.") test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnrb'] = [] # ------------------------------------ # (1) img_L # ------------------------------------ print("#if n_channels") if n_channels == 1: open_cv_image = Image.fromarray(input_img) open_cv_image = ImageOps.grayscale(open_cv_image) open_cv_image = np.array(open_cv_image) # PIL to open cv image img = np.expand_dims(open_cv_image, axis=2) # HxWx1 elif n_channels == 3: open_cv_image = np.array(input_img) # PIL to open cv image if open_cv_image.ndim == 2: open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG else: open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB print("#util.uint2tensor4(open_cv_image)") img_L = util.uint2tensor4(open_cv_image) print("#img_L.to(device)") img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ print("#model(img_L)") img_E,QF = model(img_L) print("#util.tensor2single(img_E)") img_E = util.tensor2single(img_E) print("#util.single2uint(img_E)") img_E = util.single2uint(img_E) print("#torch.tensor([[1-input_quality/100]]).cuda() || torch.tensor([[1-input_quality/100]])") qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]]) print("#util.single2uint(img_E)") img_E,QF = model(img_L, qf_input) print("#util.tensor2single(img_E)") img_E = util.tensor2single(img_E) print("#util.single2uint(img_E)") img_E = util.single2uint(img_E) if img_E.ndim == 3: img_E = img_E[:, :, [2, 1, 0]] print("--inference finished") out_img = Image.fromarray(img_E) out_img_w, out_img_h = out_img.size # output image size zoom = zoom/100 x_shift = x_shift/100 y_shift = y_shift/100 zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift) zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift) in_img = Image.fromarray(input_img) in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) print("--generating preview finished") return img_E, in_img, out_img gr.Interface( fn = inference, inputs = [gr.inputs.Image(label="Input Image"), gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"), gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)"), gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image " "(Use this to see a copy of the output image up close. " "100 = original size)"), gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom horizontal shift " "(Increase to shift to the right)"), gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom vertical shift " "(Increase to shift downwards)") ], outputs = [gr.outputs.Image(label="Result"), gr.outputs.Image(label="Before:"), gr.outputs.Image(label="After:")], examples = [["doraemon.jpg",False,60,42,50,50], ["tomandjerry.jpg",False,60,40,57,44], ["somepanda.jpg",True,100,30,8,24], ["cemetry.jpg",False,70,20,76,62], ["michelangelo_david.jpg",True,30,12,53,27], ["elon_musk.jpg",False,45,15,33,30], ["text.jpg",True,70,50,11,29]], title = "JPEG Artifacts Removal [FBCNN]", description = "Gradio Demo for JPEG Artifacts Removal. To use it, simply upload your image, " "or click one of the examples to load them. Check out the paper and the original GitHub repo at the links below. " "JPEG artifacts are noticeable distortions of images caused by JPEG lossy compression. " "This is not a super-resolution AI but a JPEG compression artifact remover. " "Written below the examples are the limitations of the input image. ", article = "
Uploaded images with a length longer than 1080 pixels will be downscaled to a smaller size " "with a length of 1080 pixels. Uploaded images with transparency will be incorrectly reconstructed at the output.
" "FBCNN GitHub Repo
"
"Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
"
"Jiaxi Jiang, "
"Kai Zhang, "
"Radu Timofte