Fix typo in metric_template_1.py
Browse files- metric_template_1.py +1 -1
metric_template_1.py
CHANGED
@@ -49,7 +49,7 @@ as $G$ and $D$ is not.
|
|
49 |
1. the measure gives higher evaluation for correctly classifying one level down compared to staying at the parent node, e.g. classification into node $E$ (ISCO minor group "111") is better than classification into its parent $C$ (ISCO sub-major group "11") since $E$ is closer to the correct category $G$;
|
50 |
2. the measure gives lower evaluation for incorrectly classifying one level down comparing to staying at the parent node, e.g. classification into node $F$ (ISCO minor group "112") is worse than classification into its parent $C$ since $F$ is farther away from $G$.
|
51 |
|
52 |
-
The features described are accomplished by pairing hierarchical variants of precision ($hP$) and recall ($hR$) to form a hierarchical F1 (hF_
|
53 |
|
54 |
Hierarchical precision can be computed with:
|
55 |
$hP = \frac{| \v{C}_i ∩ \v{C}^′_i|} {|\v{C}^′_i |} = \frac{1}{2}$
|
|
|
49 |
1. the measure gives higher evaluation for correctly classifying one level down compared to staying at the parent node, e.g. classification into node $E$ (ISCO minor group "111") is better than classification into its parent $C$ (ISCO sub-major group "11") since $E$ is closer to the correct category $G$;
|
50 |
2. the measure gives lower evaluation for incorrectly classifying one level down comparing to staying at the parent node, e.g. classification into node $F$ (ISCO minor group "112") is worse than classification into its parent $C$ since $F$ is farther away from $G$.
|
51 |
|
52 |
+
The features described are accomplished by pairing hierarchical variants of precision ($hP$) and recall ($hR$) to form a hierarchical F1 ($hF_β$) score where each sample belongs not only to its class (e.g., a unit group level code), but also to all ancestors of the class in a hierarchical graph (i.e., the minor, sub-major, and major group level codes).
|
53 |
|
54 |
Hierarchical precision can be computed with:
|
55 |
$hP = \frac{| \v{C}_i ∩ \v{C}^′_i|} {|\v{C}^′_i |} = \frac{1}{2}$
|