Spaces:
Sleeping
Sleeping
danielcd99
commited on
Commit
·
14536de
1
Parent(s):
ae778b8
feat:added main files
Browse files- app.py +30 -0
- preprocess_data.py +81 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from preprocess_data import preprocess_text,get_stopwords
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
dataset = load_dataset('danielcd99/imdb')
|
7 |
+
|
8 |
+
dataframes = {}
|
9 |
+
for split in dataset.keys():
|
10 |
+
# Convert the dataset split to a pandas DataFrame
|
11 |
+
df = dataset[split].to_pandas()
|
12 |
+
dataframes[split] = df
|
13 |
+
|
14 |
+
TITLE_TEXT = f"IMDB reviews"
|
15 |
+
DESCRIPTION_TEXT = f"Esta é uma aplicação para o trabalho de NLP. Utilizamos a base de dados de reviews do IMDb com 50.000 comentários entre positivos e negativos (a base está balanceada). Por meio desta interface é possível visualizar como os exemplos da nossa base de teste foram classificados com um BERT treinado para esta task."
|
16 |
+
|
17 |
+
st.title(TITLE_TEXT)
|
18 |
+
st.write(DESCRIPTION_TEXT)
|
19 |
+
|
20 |
+
if st.button('Encontre exemplos!'):
|
21 |
+
df = df.sample(5)
|
22 |
+
get_stopwords()
|
23 |
+
df['preprocessed_review'] = df['review'].copy()
|
24 |
+
df['preprocessed_review'] = df['preprocessed_review'].apply(preprocess_text)
|
25 |
+
cols = ['review','preprocessed_review','sentiment']
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
st.table(df[cols])
|
30 |
+
|
preprocess_data.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import nltk
|
3 |
+
from nltk.corpus import stopwords
|
4 |
+
from nltk.stem import PorterStemmer
|
5 |
+
|
6 |
+
|
7 |
+
def lowercase_text(text):
|
8 |
+
return text.lower()
|
9 |
+
|
10 |
+
def remove_html(text):
|
11 |
+
return re.sub(r'<[^<]+?>', '', text)
|
12 |
+
|
13 |
+
def remove_url(text):
|
14 |
+
return re.sub(r'http[s]?://\S+|www\.\S+', '', text)
|
15 |
+
|
16 |
+
def remove_punctuations(text):
|
17 |
+
tokens_list = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
|
18 |
+
for char in text:
|
19 |
+
if char in tokens_list:
|
20 |
+
text = text.replace(char, ' ')
|
21 |
+
|
22 |
+
return text
|
23 |
+
|
24 |
+
def remove_emojis(text):
|
25 |
+
emojis = re.compile("["
|
26 |
+
u"\U0001F600-\U0001F64F"
|
27 |
+
u"\U0001F300-\U0001F5FF"
|
28 |
+
u"\U0001F680-\U0001F6FF"
|
29 |
+
u"\U0001F1E0-\U0001F1FF"
|
30 |
+
u"\U00002500-\U00002BEF"
|
31 |
+
u"\U00002702-\U000027B0"
|
32 |
+
u"\U00002702-\U000027B0"
|
33 |
+
u"\U000024C2-\U0001F251"
|
34 |
+
u"\U0001f926-\U0001f937"
|
35 |
+
u"\U00010000-\U0010ffff"
|
36 |
+
u"\u2640-\u2642"
|
37 |
+
u"\u2600-\u2B55"
|
38 |
+
u"\u200d"
|
39 |
+
u"\u23cf"
|
40 |
+
u"\u23e9"
|
41 |
+
u"\u231a"
|
42 |
+
u"\ufe0f"
|
43 |
+
u"\u3030"
|
44 |
+
"]+", re.UNICODE)
|
45 |
+
|
46 |
+
text = re.sub(emojis, '', text)
|
47 |
+
return text
|
48 |
+
|
49 |
+
def remove_stop_words(text):
|
50 |
+
stop_words = stopwords.words('english')
|
51 |
+
new_text = ''
|
52 |
+
for word in text.split():
|
53 |
+
if word not in stop_words:
|
54 |
+
new_text += ''.join(f'{word} ')
|
55 |
+
|
56 |
+
return new_text.strip()
|
57 |
+
|
58 |
+
def stem_words(text):
|
59 |
+
stemmer = PorterStemmer()
|
60 |
+
new_text = ''
|
61 |
+
for word in text.split():
|
62 |
+
new_text += ''.join(f'{stemmer.stem(word)} ')
|
63 |
+
|
64 |
+
return new_text
|
65 |
+
|
66 |
+
def get_stopwords():
|
67 |
+
nltk.download('stopwords')
|
68 |
+
|
69 |
+
def preprocess_text(text):
|
70 |
+
text = lowercase_text(text)
|
71 |
+
text = remove_html(text)
|
72 |
+
text = remove_url(text)
|
73 |
+
text = remove_punctuations(text)
|
74 |
+
text = remove_emojis(text)
|
75 |
+
text = remove_stop_words(text)
|
76 |
+
text = stem_words(text)
|
77 |
+
|
78 |
+
return text
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
pass
|