from typing import Any from functools import lru_cache from time import sleep import cv2 import numpy import onnxruntime from tqdm import tqdm import facefusion.globals from facefusion import process_manager, wording from facefusion.thread_helper import thread_lock, conditional_thread_semaphore from facefusion.typing import VisionFrame, ModelSet, Fps from facefusion.execution import apply_execution_provider_options from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_video_fps from facefusion.filesystem import resolve_relative_path, is_file from facefusion.download import conditional_download CONTENT_ANALYSER = None MODELS : ModelSet =\ { 'open_nsfw': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx', 'path': resolve_relative_path('../.assets/models/open_nsfw.onnx') } } PROBABILITY_LIMIT = 0.80 RATE_LIMIT = 1.00 STREAM_COUNTER = 0 def get_content_analyser() -> Any: global CONTENT_ANALYSER with thread_lock(): while process_manager.is_checking(): sleep(0.5) if CONTENT_ANALYSER is None: model_path = MODELS.get('open_nsfw').get('path') CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers)) return CONTENT_ANALYSER def clear_content_analyser() -> None: global CONTENT_ANALYSER CONTENT_ANALYSER = None def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_url = MODELS.get('open_nsfw').get('url') model_path = MODELS.get('open_nsfw').get('path') if not facefusion.globals.skip_download: process_manager.check() conditional_download(download_directory_path, [ model_url ]) process_manager.end() return is_file(model_path) def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool: global STREAM_COUNTER STREAM_COUNTER = STREAM_COUNTER + 1 if STREAM_COUNTER % int(video_fps) == 0: return analyse_frame(vision_frame) return False def analyse_frame(vision_frame : VisionFrame) -> bool: content_analyser = get_content_analyser() vision_frame = prepare_frame(vision_frame) with conditional_thread_semaphore(facefusion.globals.execution_providers): probability = content_analyser.run(None, { content_analyser.get_inputs()[0].name: vision_frame })[0][0][1] return probability > PROBABILITY_LIMIT def prepare_frame(vision_frame : VisionFrame) -> VisionFrame: vision_frame = cv2.resize(vision_frame, (224, 224)).astype(numpy.float32) vision_frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32) vision_frame = numpy.expand_dims(vision_frame, axis = 0) return vision_frame @lru_cache(maxsize = None) def analyse_image(image_path : str) -> bool: frame = read_image(image_path) return analyse_frame(frame) @lru_cache(maxsize = None) def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool: video_frame_total = count_video_frame_total(video_path) video_fps = detect_video_fps(video_path) frame_range = range(start_frame or 0, end_frame or video_frame_total) rate = 0.0 counter = 0 with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress: for frame_number in frame_range: if frame_number % int(video_fps) == 0: frame = get_video_frame(video_path, frame_number) if analyse_frame(frame): counter += 1 rate = counter * int(video_fps) / len(frame_range) * 100 progress.update() progress.set_postfix(rate = rate) return rate > RATE_LIMIT