from typing import Any, Optional, List, Tuple from time import sleep import cv2 import numpy import onnxruntime import facefusion.globals from facefusion import process_manager from facefusion.common_helper import get_first from facefusion.face_helper import estimate_matrix_by_face_landmark_5, warp_face_by_face_landmark_5, warp_face_by_translation, create_static_anchors, distance_to_face_landmark_5, distance_to_bounding_box, convert_face_landmark_68_to_5, apply_nms, categorize_age, categorize_gender from facefusion.face_store import get_static_faces, set_static_faces from facefusion.execution import apply_execution_provider_options from facefusion.download import conditional_download from facefusion.filesystem import resolve_relative_path, is_file from facefusion.thread_helper import thread_lock, thread_semaphore, conditional_thread_semaphore from facefusion.typing import VisionFrame, Face, FaceSet, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelSet, BoundingBox, FaceLandmarkSet, FaceLandmark5, FaceLandmark68, Score, FaceScoreSet, Embedding from facefusion.vision import resize_frame_resolution, unpack_resolution FACE_ANALYSER = None MODELS : ModelSet =\ { 'face_detector_retinaface': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx', 'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx') }, 'face_detector_scrfd': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/scrfd_2.5g.onnx', 'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx') }, 'face_detector_yoloface': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yoloface_8n.onnx', 'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx') }, 'face_detector_yunet': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx', 'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx') }, 'face_recognizer_arcface_blendswap': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') }, 'face_recognizer_arcface_inswapper': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') }, 'face_recognizer_arcface_simswap': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx', 'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx') }, 'face_recognizer_arcface_uniface': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') }, 'face_landmarker_68': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/2dfan4.onnx', 'path': resolve_relative_path('../.assets/models/2dfan4.onnx') }, 'face_landmarker_68_5': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_landmarker_68_5.onnx', 'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.onnx') }, 'gender_age': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx', 'path': resolve_relative_path('../.assets/models/gender_age.onnx') } } def get_face_analyser() -> Any: global FACE_ANALYSER face_detectors = {} face_landmarkers = {} with thread_lock(): while process_manager.is_checking(): sleep(0.5) if FACE_ANALYSER is None: if facefusion.globals.face_detector_model in [ 'many', 'retinaface' ]: face_detectors['retinaface'] = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]: face_detectors['scrfd'] = onnxruntime.InferenceSession(MODELS.get('face_detector_scrfd').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]: face_detectors['yoloface'] = onnxruntime.InferenceSession(MODELS.get('face_detector_yoloface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) if facefusion.globals.face_detector_model in [ 'yunet' ]: face_detectors['yunet'] = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0)) if facefusion.globals.face_recognizer_model == 'arcface_blendswap': face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendswap').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) if facefusion.globals.face_recognizer_model == 'arcface_inswapper': face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) if facefusion.globals.face_recognizer_model == 'arcface_simswap': face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) if facefusion.globals.face_recognizer_model == 'arcface_uniface': face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_uniface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) face_landmarkers['68'] = onnxruntime.InferenceSession(MODELS.get('face_landmarker_68').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) face_landmarkers['68_5'] = onnxruntime.InferenceSession(MODELS.get('face_landmarker_68_5').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers)) FACE_ANALYSER =\ { 'face_detectors': face_detectors, 'face_recognizer': face_recognizer, 'face_landmarkers': face_landmarkers, 'gender_age': gender_age } return FACE_ANALYSER def clear_face_analyser() -> Any: global FACE_ANALYSER FACE_ANALYSER = None def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_urls =\ [ MODELS.get('face_landmarker_68').get('url'), MODELS.get('face_landmarker_68_5').get('url'), MODELS.get('gender_age').get('url') ] model_paths =\ [ MODELS.get('face_landmarker_68').get('path'), MODELS.get('face_landmarker_68_5').get('path'), MODELS.get('gender_age').get('path') ] if facefusion.globals.face_detector_model in [ 'many', 'retinaface' ]: model_urls.append(MODELS.get('face_detector_retinaface').get('url')) model_paths.append(MODELS.get('face_detector_retinaface').get('path')) if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]: model_urls.append(MODELS.get('face_detector_scrfd').get('url')) model_paths.append(MODELS.get('face_detector_scrfd').get('path')) if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]: model_urls.append(MODELS.get('face_detector_yoloface').get('url')) model_paths.append(MODELS.get('face_detector_yoloface').get('path')) if facefusion.globals.face_detector_model in [ 'yunet' ]: model_urls.append(MODELS.get('face_detector_yunet').get('url')) model_paths.append(MODELS.get('face_detector_yunet').get('path')) if facefusion.globals.face_recognizer_model == 'arcface_blendswap': model_urls.append(MODELS.get('face_recognizer_arcface_blendswap').get('url')) model_paths.append(MODELS.get('face_recognizer_arcface_blendswap').get('path')) if facefusion.globals.face_recognizer_model == 'arcface_inswapper': model_urls.append(MODELS.get('face_recognizer_arcface_inswapper').get('url')) model_paths.append(MODELS.get('face_recognizer_arcface_inswapper').get('path')) if facefusion.globals.face_recognizer_model == 'arcface_simswap': model_urls.append(MODELS.get('face_recognizer_arcface_simswap').get('url')) model_paths.append(MODELS.get('face_recognizer_arcface_simswap').get('path')) if facefusion.globals.face_recognizer_model == 'arcface_uniface': model_urls.append(MODELS.get('face_recognizer_arcface_uniface').get('url')) model_paths.append(MODELS.get('face_recognizer_arcface_uniface').get('path')) if not facefusion.globals.skip_download: process_manager.check() conditional_download(download_directory_path, model_urls) process_manager.end() return all(is_file(model_path) for model_path in model_paths) def detect_with_retinaface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]: face_detector = get_face_analyser().get('face_detectors').get('retinaface') face_detector_width, face_detector_height = unpack_resolution(face_detector_size) temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] feature_strides = [ 8, 16, 32 ] feature_map_channel = 3 anchor_total = 2 bounding_box_list = [] face_landmark_5_list = [] score_list = [] detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size) with thread_semaphore(): detections = face_detector.run(None, { face_detector.get_inputs()[0].name: detect_vision_frame }) for index, feature_stride in enumerate(feature_strides): keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0] if keep_indices.any(): stride_height = face_detector_height // feature_stride stride_width = face_detector_width // feature_stride anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width) bounding_box_raw = detections[index + feature_map_channel] * feature_stride face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]: bounding_box_list.append(numpy.array( [ bounding_box[0] * ratio_width, bounding_box[1] * ratio_height, bounding_box[2] * ratio_width, bounding_box[3] * ratio_height ])) for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]: face_landmark_5_list.append(face_landmark_5 * [ ratio_width, ratio_height ]) for score in detections[index][keep_indices]: score_list.append(score[0]) return bounding_box_list, face_landmark_5_list, score_list def detect_with_scrfd(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]: face_detector = get_face_analyser().get('face_detectors').get('scrfd') face_detector_width, face_detector_height = unpack_resolution(face_detector_size) temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] feature_strides = [ 8, 16, 32 ] feature_map_channel = 3 anchor_total = 2 bounding_box_list = [] face_landmark_5_list = [] score_list = [] detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size) with thread_semaphore(): detections = face_detector.run(None, { face_detector.get_inputs()[0].name: detect_vision_frame }) for index, feature_stride in enumerate(feature_strides): keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0] if keep_indices.any(): stride_height = face_detector_height // feature_stride stride_width = face_detector_width // feature_stride anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width) bounding_box_raw = detections[index + feature_map_channel] * feature_stride face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]: bounding_box_list.append(numpy.array( [ bounding_box[0] * ratio_width, bounding_box[1] * ratio_height, bounding_box[2] * ratio_width, bounding_box[3] * ratio_height ])) for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]: face_landmark_5_list.append(face_landmark_5 * [ ratio_width, ratio_height ]) for score in detections[index][keep_indices]: score_list.append(score[0]) return bounding_box_list, face_landmark_5_list, score_list def detect_with_yoloface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]: face_detector = get_face_analyser().get('face_detectors').get('yoloface') face_detector_width, face_detector_height = unpack_resolution(face_detector_size) temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] bounding_box_list = [] face_landmark_5_list = [] score_list = [] detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size) with thread_semaphore(): detections = face_detector.run(None, { face_detector.get_inputs()[0].name: detect_vision_frame }) detections = numpy.squeeze(detections).T bounding_box_raw, score_raw, face_landmark_5_raw = numpy.split(detections, [ 4, 5 ], axis = 1) keep_indices = numpy.where(score_raw > facefusion.globals.face_detector_score)[0] if keep_indices.any(): bounding_box_raw, face_landmark_5_raw, score_raw = bounding_box_raw[keep_indices], face_landmark_5_raw[keep_indices], score_raw[keep_indices] for bounding_box in bounding_box_raw: bounding_box_list.append(numpy.array( [ (bounding_box[0] - bounding_box[2] / 2) * ratio_width, (bounding_box[1] - bounding_box[3] / 2) * ratio_height, (bounding_box[0] + bounding_box[2] / 2) * ratio_width, (bounding_box[1] + bounding_box[3] / 2) * ratio_height ])) face_landmark_5_raw[:, 0::3] = (face_landmark_5_raw[:, 0::3]) * ratio_width face_landmark_5_raw[:, 1::3] = (face_landmark_5_raw[:, 1::3]) * ratio_height for face_landmark_5 in face_landmark_5_raw: face_landmark_5_list.append(numpy.array(face_landmark_5.reshape(-1, 3)[:, :2])) score_list = score_raw.ravel().tolist() return bounding_box_list, face_landmark_5_list, score_list def detect_with_yunet(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]: face_detector = get_face_analyser().get('face_detectors').get('yunet') face_detector_width, face_detector_height = unpack_resolution(face_detector_size) temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] bounding_box_list = [] face_landmark_5_list = [] score_list = [] face_detector.setInputSize((temp_vision_frame.shape[1], temp_vision_frame.shape[0])) face_detector.setScoreThreshold(facefusion.globals.face_detector_score) with thread_semaphore(): _, detections = face_detector.detect(temp_vision_frame) if numpy.any(detections): for detection in detections: bounding_box_list.append(numpy.array( [ detection[0] * ratio_width, detection[1] * ratio_height, (detection[0] + detection[2]) * ratio_width, (detection[1] + detection[3]) * ratio_height ])) face_landmark_5_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height ]) score_list.append(detection[14]) return bounding_box_list, face_landmark_5_list, score_list def prepare_detect_frame(temp_vision_frame : VisionFrame, face_detector_size : str) -> VisionFrame: face_detector_width, face_detector_height = unpack_resolution(face_detector_size) detect_vision_frame = numpy.zeros((face_detector_height, face_detector_width, 3)) detect_vision_frame[:temp_vision_frame.shape[0], :temp_vision_frame.shape[1], :] = temp_vision_frame detect_vision_frame = (detect_vision_frame - 127.5) / 128.0 detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) return detect_vision_frame def create_faces(vision_frame : VisionFrame, bounding_box_list : List[BoundingBox], face_landmark_5_list : List[FaceLandmark5], score_list : List[Score]) -> List[Face]: faces = [] if facefusion.globals.face_detector_score > 0: sort_indices = numpy.argsort(-numpy.array(score_list)) bounding_box_list = [ bounding_box_list[index] for index in sort_indices ] face_landmark_5_list = [face_landmark_5_list[index] for index in sort_indices] score_list = [ score_list[index] for index in sort_indices ] iou_threshold = 0.1 if facefusion.globals.face_detector_model == 'many' else 0.4 keep_indices = apply_nms(bounding_box_list, iou_threshold) for index in keep_indices: bounding_box = bounding_box_list[index] face_landmark_5_68 = face_landmark_5_list[index] face_landmark_68_5 = expand_face_landmark_68_from_5(face_landmark_5_68) face_landmark_68 = face_landmark_68_5 face_landmark_68_score = 0.0 if facefusion.globals.face_landmarker_score > 0: face_landmark_68, face_landmark_68_score = detect_face_landmark_68(vision_frame, bounding_box) if face_landmark_68_score > facefusion.globals.face_landmarker_score: face_landmark_5_68 = convert_face_landmark_68_to_5(face_landmark_68) landmarks : FaceLandmarkSet =\ { '5': face_landmark_5_list[index], '5/68': face_landmark_5_68, '68': face_landmark_68, '68/5': face_landmark_68_5 } scores : FaceScoreSet = \ { 'detector': score_list[index], 'landmarker': face_landmark_68_score } embedding, normed_embedding = calc_embedding(vision_frame, landmarks.get('5/68')) gender, age = detect_gender_age(vision_frame, bounding_box) faces.append(Face( bounding_box = bounding_box, landmarks = landmarks, scores = scores, embedding = embedding, normed_embedding = normed_embedding, gender = gender, age = age )) return faces def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]: face_recognizer = get_face_analyser().get('face_recognizer') crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, 'arcface_112_v2', (112, 112)) crop_vision_frame = crop_vision_frame / 127.5 - 1 crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) with conditional_thread_semaphore(facefusion.globals.execution_providers): embedding = face_recognizer.run(None, { face_recognizer.get_inputs()[0].name: crop_vision_frame })[0] embedding = embedding.ravel() normed_embedding = embedding / numpy.linalg.norm(embedding) return embedding, normed_embedding def detect_face_landmark_68(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[FaceLandmark68, Score]: face_landmarker = get_face_analyser().get('face_landmarkers').get('68') scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max() translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5 crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256)) crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab) if numpy.mean(crop_vision_frame[:, :, 0]) < 30: crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0]) crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB) crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0 with conditional_thread_semaphore(facefusion.globals.execution_providers): face_landmark_68, face_heatmap = face_landmarker.run(None, { face_landmarker.get_inputs()[0].name: [ crop_vision_frame ] }) face_landmark_68 = face_landmark_68[:, :, :2][0] / 64 face_landmark_68 = face_landmark_68.reshape(1, -1, 2) * 256 face_landmark_68 = cv2.transform(face_landmark_68, cv2.invertAffineTransform(affine_matrix)) face_landmark_68 = face_landmark_68.reshape(-1, 2) face_landmark_68_score = numpy.amax(face_heatmap, axis = (2, 3)) face_landmark_68_score = numpy.mean(face_landmark_68_score) return face_landmark_68, face_landmark_68_score def expand_face_landmark_68_from_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68: face_landmarker = get_face_analyser().get('face_landmarkers').get('68_5') affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1)) face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2) with conditional_thread_semaphore(facefusion.globals.execution_providers): face_landmark_68_5 = face_landmarker.run(None, { face_landmarker.get_inputs()[0].name: [ face_landmark_5 ] })[0][0] face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2) return face_landmark_68_5 def detect_gender_age(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[int, int]: gender_age = get_face_analyser().get('gender_age') bounding_box = bounding_box.reshape(2, -1) scale = 64 / numpy.subtract(*bounding_box[::-1]).max() translation = 48 - bounding_box.sum(axis = 0) * scale * 0.5 crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (96, 96)) crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) with conditional_thread_semaphore(facefusion.globals.execution_providers): prediction = gender_age.run(None, { gender_age.get_inputs()[0].name: crop_vision_frame })[0][0] gender = int(numpy.argmax(prediction[:2])) age = int(numpy.round(prediction[2] * 100)) return gender, age def get_one_face(vision_frame : VisionFrame, position : int = 0) -> Optional[Face]: many_faces = get_many_faces(vision_frame) if many_faces: try: return many_faces[position] except IndexError: return many_faces[-1] return None def get_average_face(vision_frames : List[VisionFrame], position : int = 0) -> Optional[Face]: average_face = None faces = [] embedding_list = [] normed_embedding_list = [] for vision_frame in vision_frames: face = get_one_face(vision_frame, position) if face: faces.append(face) embedding_list.append(face.embedding) normed_embedding_list.append(face.normed_embedding) if faces: first_face = get_first(faces) average_face = Face( bounding_box = first_face.bounding_box, landmarks = first_face.landmarks, scores = first_face.scores, embedding = numpy.mean(embedding_list, axis = 0), normed_embedding = numpy.mean(normed_embedding_list, axis = 0), gender = first_face.gender, age = first_face.age ) return average_face def get_many_faces(vision_frame : VisionFrame) -> List[Face]: faces = [] try: faces_cache = get_static_faces(vision_frame) if faces_cache: faces = faces_cache else: bounding_box_list = [] face_landmark_5_list = [] score_list = [] if facefusion.globals.face_detector_model in [ 'many', 'retinaface']: bounding_box_list_retinaface, face_landmark_5_list_retinaface, score_list_retinaface = detect_with_retinaface(vision_frame, facefusion.globals.face_detector_size) bounding_box_list.extend(bounding_box_list_retinaface) face_landmark_5_list.extend(face_landmark_5_list_retinaface) score_list.extend(score_list_retinaface) if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]: bounding_box_list_scrfd, face_landmark_5_list_scrfd, score_list_scrfd = detect_with_scrfd(vision_frame, facefusion.globals.face_detector_size) bounding_box_list.extend(bounding_box_list_scrfd) face_landmark_5_list.extend(face_landmark_5_list_scrfd) score_list.extend(score_list_scrfd) if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]: bounding_box_list_yoloface, face_landmark_5_list_yoloface, score_list_yoloface = detect_with_yoloface(vision_frame, facefusion.globals.face_detector_size) bounding_box_list.extend(bounding_box_list_yoloface) face_landmark_5_list.extend(face_landmark_5_list_yoloface) score_list.extend(score_list_yoloface) if facefusion.globals.face_detector_model in [ 'yunet' ]: bounding_box_list_yunet, face_landmark_5_list_yunet, score_list_yunet = detect_with_yunet(vision_frame, facefusion.globals.face_detector_size) bounding_box_list.extend(bounding_box_list_yunet) face_landmark_5_list.extend(face_landmark_5_list_yunet) score_list.extend(score_list_yunet) if bounding_box_list and face_landmark_5_list and score_list: faces = create_faces(vision_frame, bounding_box_list, face_landmark_5_list, score_list) if faces: set_static_faces(vision_frame, faces) if facefusion.globals.face_analyser_order: faces = sort_by_order(faces, facefusion.globals.face_analyser_order) if facefusion.globals.face_analyser_age: faces = filter_by_age(faces, facefusion.globals.face_analyser_age) if facefusion.globals.face_analyser_gender: faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender) except (AttributeError, ValueError): pass return faces def find_similar_faces(reference_faces : FaceSet, vision_frame : VisionFrame, face_distance : float) -> List[Face]: similar_faces : List[Face] = [] many_faces = get_many_faces(vision_frame) if reference_faces: for reference_set in reference_faces: if not similar_faces: for reference_face in reference_faces[reference_set]: for face in many_faces: if compare_faces(face, reference_face, face_distance): similar_faces.append(face) return similar_faces def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool: current_face_distance = calc_face_distance(face, reference_face) return current_face_distance < face_distance def calc_face_distance(face : Face, reference_face : Face) -> float: if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'): return 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding) return 0 def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]: if order == 'left-right': return sorted(faces, key = lambda face: face.bounding_box[0]) if order == 'right-left': return sorted(faces, key = lambda face: face.bounding_box[0], reverse = True) if order == 'top-bottom': return sorted(faces, key = lambda face: face.bounding_box[1]) if order == 'bottom-top': return sorted(faces, key = lambda face: face.bounding_box[1], reverse = True) if order == 'small-large': return sorted(faces, key = lambda face: (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1])) if order == 'large-small': return sorted(faces, key = lambda face: (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1]), reverse = True) if order == 'best-worst': return sorted(faces, key = lambda face: face.scores.get('detector'), reverse = True) if order == 'worst-best': return sorted(faces, key = lambda face: face.scores.get('detector')) return faces def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]: filter_faces = [] for face in faces: if categorize_age(face.age) == age: filter_faces.append(face) return filter_faces def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]: filter_faces = [] for face in faces: if categorize_gender(face.gender) == gender: filter_faces.append(face) return filter_faces