Dan Biagini commited on
Commit
ddb9a2a
β€’
1 Parent(s): a31f255

sample hockey breed images

Browse files
requirements.txt ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ altair==5.4.1
2
+ attrs==24.2.0
3
+ blinker==1.8.2
4
+ cachetools==5.5.0
5
+ certifi==2024.8.30
6
+ charset-normalizer==3.3.2
7
+ click==8.1.7
8
+ gitdb==4.0.11
9
+ GitPython==3.1.43
10
+ idna==3.8
11
+ Jinja2==3.1.4
12
+ jsonschema==4.23.0
13
+ jsonschema-specifications==2023.12.1
14
+ markdown-it-py==3.0.0
15
+ MarkupSafe==2.1.5
16
+ mdurl==0.1.2
17
+ narwhals==1.6.0
18
+ numpy==2.1.0
19
+ packaging==24.1
20
+ pandas==2.2.2
21
+ pillow==10.4.0
22
+ protobuf==5.28.0
23
+ pyarrow==17.0.0
24
+ pydeck==0.9.1
25
+ Pygments==2.18.0
26
+ python-dateutil==2.9.0.post0
27
+ pytz==2024.1
28
+ referencing==0.35.1
29
+ requests==2.32.3
30
+ rich==13.8.0
31
+ rpds-py==0.20.0
32
+ six==1.16.0
33
+ smmap==5.0.1
34
+ streamlit==1.38.0
35
+ streamlit-image-select==0.6.0
36
+ tenacity==8.5.0
37
+ toml==0.10.2
38
+ tornado==6.4.1
39
+ typing_extensions==4.12.2
40
+ tzdata==2024.1
41
+ urllib3==2.2.2
42
+ watchdog==4.0.2
src/Hockey_Breeds.py CHANGED
@@ -1,14 +1,14 @@
1
  import streamlit as st
 
2
 
3
  import logging
4
 
5
  st.set_page_config(page_title='Hockey Breeds', layout="wide",
6
  page_icon=":frame_with_picture:")
7
 
8
- st.title('Hockey Breeds - Proof of Concept')
9
 
10
- st.subheader('Image Classification',
11
- help='Proof of concept application')
12
 
13
  img_class = '''Image Classification in Computer Vision is the act of determining the most appropriate label for an entire image from a set of fixed labels.
14
  A popular topic of image classification in Computer Vision introductions and courses is to use an example problem of training a model to label images of various pet breeds.
@@ -27,3 +27,8 @@ st.subheader("Validation Results")
27
  st.markdown('Validation of the model\'s performance was done using 26 images not included in the training set. The model performed fairly well against the validation dataset, with only 1 misclassified image.')
28
  st.image("src/images/samples/confusion_matrix.png", caption="Confusion Matrix for Hockey Breeds ")
29
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from streamlit_image_select import image_select
3
 
4
  import logging
5
 
6
  st.set_page_config(page_title='Hockey Breeds', layout="wide",
7
  page_icon=":frame_with_picture:")
8
 
9
+ st.title('Hockey Breeds - Hello Computer Vision')
10
 
11
+ st.subheader('Image Classification')
 
12
 
13
  img_class = '''Image Classification in Computer Vision is the act of determining the most appropriate label for an entire image from a set of fixed labels.
14
  A popular topic of image classification in Computer Vision introductions and courses is to use an example problem of training a model to label images of various pet breeds.
 
27
  st.markdown('Validation of the model\'s performance was done using 26 images not included in the training set. The model performed fairly well against the validation dataset, with only 1 misclassified image.')
28
  st.image("src/images/samples/confusion_matrix.png", caption="Confusion Matrix for Hockey Breeds ")
29
 
30
+ st.subheader("Try it out")
31
+
32
+ # unzip the sample images
33
+
34
+ img = image_select(label="Select an image and hockey breeds will guess a label", images=["src/images/"])
src/images/{samples β†’ artifacts}/confusion_matrix.png RENAMED
File without changes
src/images/samples/goalie-samples.zip ADDED
Binary file (89.2 kB). View file
 
src/images/samples/player-samples.zip ADDED
Binary file (117 kB). View file
 
src/images/samples/referee-samples.zip ADDED
Binary file (66.5 kB). View file
 
src/images/samples/sampl_batch.png ADDED