ISOM5240 / app.py
czhaobt's picture
Create app.py
fc48446 verified
raw
history blame
2.01 kB
import streamlit as st
from transformers import pipeline
from gtts import gTTS
import io
import os
# function part
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
story_generator = pipeline("text-generation", model="Qwen/QwQ-32B")
story = story_generator(text, max_length=200, num_return_sequences=1)[0]["generated_text"]
return story
# text2audio
def text2audio(story_text):
# 创建 gTTS 对象
tts = gTTS(text=story_text, lang='en')
# 创建一个字节流对象用于存储音频数据
audio_file = io.BytesIO()
# 将音频数据写入字节流
tts.write_to_fp(audio_file)
# 将文件指针移到开头
audio_file.seek(0)
return audio_file
st.set_page_config(page_title="Your Image to Audio Story",
page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
# 保存上传的文件到临时文件
temp_file_path = "temp_image.jpg"
bytes_data = uploaded_file.getvalue()
with open(temp_file_path, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image",
use_column_width=True)
# Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(temp_file_path)
st.write(scenario)
# 删除临时文件
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
# Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
# Stage 3: Story to Audio data
st.text('Generating audio data...')
audio_data = text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_data,
format="audio/mpeg",
start_time=0)