{ "cells": [ { "cell_type": "markdown", "id": 3.0293430767166755e+38, "metadata": { "id": 3.0293430767166755e+38 }, "source": [ "# Gradio Demo: blocks_flipper" ] }, { "cell_type": "code", "execution_count": 23, "id": 2.8891853944186117e+38, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 616 }, "id": 2.8891853944186117e+38, "outputId": "b60a6d5e-045d-4b40-bfd8-6caa407a34df", "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7868\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import gradio as gr\n", "import os\n", "from PIL import Image\n", "from functools import partial\n", "\n", "def retrieve_input_image(dataset, inputs):\n", " img_id = inputs\n", " img_path = os.path.join('online_demo', dataset, 'step-100_scale-6.0', img_id, 'input.png')\n", " image = Image.open(img_path)\n", " return image\n", "\n", "def retrieve_novel_view(dataset, img_id, polar, azimuth, zoom, seed):\n", " polar = polar // 30 + 1\n", " azimuth = azimuth // 30\n", " zoom = int(zoom * 2 + 1)\n", " img_path = os.path.join('online_demo', dataset, 'step-100_scale-6.0', img_id,\\\n", " 'polar-%d_azimuth-%d_distance-%d_seed-%d.png' % (polar, azimuth, zoom, seed))\n", " image = Image.open(img_path)\n", " return image\n", " \n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"Flip text or image files using this demo.\")\n", " with gr.Tab(\"In-the-wild Images\"):\n", " with gr.Row():\n", " with gr.Column(scale=1):\n", " default_input_image = Image.open( os.path.join('online_demo', 'nerf_wild', 'step-100_scale-6.0', 'car1', 'input.png'))\n", " input_image = gr.Image(default_input_image, shape=[256, 256])\n", " options = sorted(os.listdir('online_demo/nerf_wild/step-100_scale-6.0'))\n", " img_id = gr.Dropdown(options, value='car1', label='options')\n", " text_button = gr.Button(\"Load Input Image\")\n", " retrieve_input_image_dataset = partial(retrieve_input_image, 'nerf_wild')\n", " text_button.click(retrieve_input_image_dataset, inputs=img_id, outputs=input_image)\n", "\n", " with gr.Column(scale=1):\n", " novel_view = gr.Image(shape=[256, 256])\n", " inputs = [img_id,\n", " gr.Slider(-30, 30, value=0, step=30, label='Polar angle (vertical rotation in degrees)'),\n", " gr.Slider(0, 330, value=0, step=30, label='Azimuth angle (horizontal rotation in degrees)'),\n", " gr.Slider(-0.5, 0.5, value=0, step=0.5, label='Zoom'),\n", " gr.Slider(1, 4, value=1, step=1, label='Random seed')]\n", " \n", " submit_button = gr.Button(\"Get Novel View\")\n", " retrieve_novel_view_dataset = partial(retrieve_novel_view, 'nerf_wild')\n", " submit_button.click(retrieve_novel_view_dataset, inputs=inputs, outputs=novel_view)\n", " \n", " with gr.Tab(\"Google Scanned Objects\"):\n", " with gr.Row():\n", " with gr.Column(scale=1):\n", " default_input_image = Image.open( os.path.join('online_demo', 'GSO', 'step-100_scale-6.0', 'SAMBA_HEMP', 'input.png'))\n", " input_image = gr.Image(default_input_image, shape=[256, 256])\n", " options = sorted(os.listdir('online_demo/GSO/step-100_scale-6.0'))\n", " img_id = gr.Dropdown(options, value='SAMBA_HEMP', label='options')\n", " text_button = gr.Button(\"Choose Input Image\")\n", " retrieve_input_image_dataset = partial(retrieve_input_image, 'GSO')\n", " text_button.click(retrieve_input_image_dataset, inputs=img_id, outputs=input_image)\n", "\n", " with gr.Column(scale=1):\n", " novel_view = gr.Image(shape=[256, 256])\n", " inputs = [img_id,\n", " gr.Slider(-30, 30, value=0, step=30, label='Polar angle (vertical rotation in degrees)'),\n", " gr.Slider(0, 330, value=0, step=30, label='Azimuth angle (horizontal rotation in degrees)'),\n", " gr.Slider(-0.5, 0.5, value=0, step=0.5, label='Zoom'),\n", " gr.Slider(1, 4, value=1, step=1, label='Random seed')]\n", " \n", " submit_button = gr.Button(\"Get Novel View\")\n", " retrieve_novel_view_dataset = partial(retrieve_novel_view, 'GSO')\n", " submit_button.click(retrieve_novel_view_dataset, inputs=inputs, outputs=novel_view)\n", " \n", " with gr.Tab(\"RTMV\"):\n", " with gr.Row():\n", " with gr.Column(scale=1):\n", " default_input_image = Image.open( os.path.join('online_demo', 'RTMV', 'step-100_scale-6.0', '00000', 'input.png'))\n", " input_image = gr.Image(default_input_image, shape=[256, 256])\n", " options = sorted(os.listdir('online_demo/RTMV/step-100_scale-6.0'))\n", " img_id = gr.Dropdown(options, value='00000', label='options')\n", " text_button = gr.Button(\"Choose Input Image\")\n", " retrieve_input_image_dataset = partial(retrieve_input_image, 'RTMV')\n", " text_button.click(retrieve_input_image_dataset, inputs=img_id, outputs=input_image)\n", "\n", " with gr.Column(scale=1):\n", " novel_view = gr.Image(shape=[256, 256])\n", " inputs = [img_id,\n", " gr.Slider(-30, 30, value=0, step=30, label='Polar angle (vertical rotation in degrees)'),\n", " gr.Slider(0, 330, value=0, step=30, label='Azimuth angle (horizontal rotation in degrees)'),\n", " gr.Slider(-0.5, 0.5, value=0, step=0.5, label='Zoom'),\n", " gr.Slider(1, 4, value=1, step=1, label='Random seed')]\n", " \n", " submit_button = gr.Button(\"Get Novel View\")\n", " retrieve_novel_view_dataset = partial(retrieve_novel_view, 'RTMV')\n", " submit_button.click(retrieve_novel_view_dataset, inputs=inputs, outputs=novel_view)\n", " \n", " \n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "bk8_q39r_iGt", "metadata": { "id": "bk8_q39r_iGt" }, "outputs": [], "source": [ "img_id = gr.Dropdown(options, value='car1')" ] }, { "cell_type": "code", "execution_count": 13, "id": "e91860b3", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/rliu/anaconda3/lib/python3.9/site-packages/gradio/utils.py:805: UserWarning: Expected 2 arguments for function , received 0.\n", " warnings.warn(\n", "/home/rliu/anaconda3/lib/python3.9/site-packages/gradio/utils.py:809: UserWarning: Expected at least 2 arguments for function , received 0.\n", " warnings.warn(\n" ] }, { "ename": "AttributeError", "evalue": "change() and other events can only be called within a Blocks context.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/tmp/ipykernel_2769604/1401407332.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimg_id\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mretrieve_input_image\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m~/anaconda3/lib/python3.9/site-packages/gradio/events.py\u001b[0m in \u001b[0;36mchange\u001b[0;34m(self, fn, inputs, outputs, api_name, status_tracker, scroll_to_output, show_progress, queue, batch, max_batch_size, preprocess, postprocess, cancels, every, _js)\u001b[0m\n\u001b[1;32m 79\u001b[0m \u001b[0;34m\"The 'status_tracker' parameter has been deprecated and has no effect.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 80\u001b[0m )\n\u001b[0;32m---> 81\u001b[0;31m dep = self.set_event_trigger(\n\u001b[0m\u001b[1;32m 82\u001b[0m \u001b[0;34m\"change\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.9/site-packages/gradio/blocks.py\u001b[0m in \u001b[0;36mset_event_trigger\u001b[0;34m(self, event_name, fn, inputs, outputs, preprocess, postprocess, scroll_to_output, show_progress, api_name, js, no_target, queue, batch, max_batch_size, cancels, every)\u001b[0m\n\u001b[1;32m 192\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 193\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mContext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mroot_block\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 194\u001b[0;31m raise AttributeError(\n\u001b[0m\u001b[1;32m 195\u001b[0m \u001b[0;34mf\"{event_name}() and other events can only be called within a Blocks context.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 196\u001b[0m )\n", "\u001b[0;31mAttributeError\u001b[0m: change() and other events can only be called within a Blocks context." ] } ], "source": [ "img_id.change(retrieve_input_image)" ] }, { "cell_type": "code", "execution_count": 17, "id": "ab10a43f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'car1'" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "img_id.value" ] }, { "cell_type": "code", "execution_count": null, "id": "2febec07", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }