import gradio as gr from huggingface_hub import hf_hub_download from ultralytics import YOLO from supervision import Detections from PIL import Image, ImageDraw import cv2 import numpy as np import tempfile import os # Download and load the YOLOv8 face detection model model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt") model = YOLO(model_path) # ---------- Image Detection Function ---------- def detect_faces(image: Image.Image): output = model(image) results = Detections.from_ultralytics(output[0]) boxes = results.xyxy annotated_image = image.copy() draw = ImageDraw.Draw(annotated_image) for box in boxes: x1, y1, x2, y2 = box draw.rectangle([x1, y1, x2, y2], outline="red", width=2) face_count = len(boxes) return annotated_image, f"Number of faces detected: {face_count}" # ---------- Video Detection Function ---------- def detect_faces_in_video(video_path): cap = cv2.VideoCapture(video_path) fps = cap.get(cv2.CAP_PROP_FPS) w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) temp_out_path = os.path.join(tempfile.gettempdir(), "output.avi") fourcc = cv2.VideoWriter_fourcc(*"XVID") out = cv2.VideoWriter(temp_out_path, fourcc, fps, (w, h)) total_faces = 0 while True: ret, frame = cap.read() if not ret: break rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = model(rgb) dets = Detections.from_ultralytics(results[0]) for box in dets.xyxy: x1, y1, x2, y2 = map(int, box) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2) total_faces += len(dets.xyxy) out.write(frame) cap.release() out.release() return temp_out_path, f"Total faces detected (across all frames): {total_faces}" # ---------- Gradio Interface Setup ---------- image_interface = gr.Interface( fn=detect_faces, inputs=gr.Image(type="pil", label="Upload Image"), outputs=[ gr.Image(type="pil", label="Annotated Image"), gr.Text(label="Face Count") ], title="YOLOv8 Face Detector (Image)", description="Upload an image to detect faces using a YOLOv8 face detection model." ) video_interface = gr.Interface( fn=detect_faces_in_video, inputs=gr.Video(label="Upload Video"), outputs=[ gr.Video(label="Annotated Video"), gr.Text(label="Face Count") ], title="YOLOv8 Face Detector (Video)", description="Upload a video to detect and annotate faces frame by frame using YOLOv8." ) demo = gr.TabbedInterface( interface_list=[image_interface, video_interface], tab_names=["Image Face Detection", "Video Face Detection"] ) if __name__ == "__main__": demo.launch()