""" Gradio web application """ import os import json import requests import gradio as gr from dotenv import load_dotenv, find_dotenv from classification.classifier import Classifier AWS_API = None # Initialize API URLs from env file or global settings def retrieve_api(): """Initialize API URLs from env file or global settings""" env_path = find_dotenv("config_api.env") if env_path: load_dotenv(dotenv_path=env_path) print("config_api.env file loaded successfully.") else: print("config_api.env file not found.") # Use of AWS endpoint or local container by default global AWS_API AWS_API = os.getenv("AWS_API", default="http://localhost:8000") def initialize_classifier(): """Initialize ML classifier""" cls = Classifier() return cls def predict_class_local(sepl, sepw, petl, petw): """ML prediction using direct source code - local""" data = list(map(float, [sepl, sepw, petl, petw])) cls = initialize_classifier() results = cls.load_and_test(data) return results def predict_class_aws(sepl, sepw, petl, petw): """ML prediction using AWS API endpoint""" if AWS_API == "http://localhost:8080": api_endpoint = AWS_API + "/2015-03-31/functions/function/invocations" else: api_endpoint = AWS_API + "/test/classify" data = list(map(float, [sepl, sepw, petl, petw])) json_object = {"features": [data]} response = requests.post(api_endpoint, json=json_object, timeout=60) if response.status_code == 200: # Process the response response_json = response.json() results_dict = json.loads(response_json["body"]) else: results_dict = {"Error": response.status_code} gr.Error(f"\t API Error: {response.status_code}") return results_dict def predict(sepl, sepw, petl, petw, execution_type): """ML prediction - local or via API endpoint""" print("ML prediction type: ", execution_type) results = None if execution_type == "Local": results = predict_class_local(sepl, sepw, petl, petw) elif execution_type == "AWS API": results = predict_class_aws(sepl, sepw, petl, petw) prediction = results["predictions"][0] confidence = max(results["probabilities"][0]) return f"Prediction: {prediction} \t - \t Confidence: {confidence:.3f}" # Define the Gradio interface def user_interface(): """Gradio application""" description = """ Aims: Categorization of different species of iris flowers (Setosa, Versicolor, and Virginica) based on measurements of physical characteristics (sepals and petals). Notes: This web application uses two types of machine learning predictions: - local prediction (direct source code) - cloud prediction via an AWS API (i.e. use of ECR, Lambda function and API Gateway) """ with gr.Blocks() as demo: gr.Markdown("# IRIS classification task - use of AWS Lambda") gr.Markdown(description) with gr.Row(): with gr.Column(): with gr.Group(): gr_sepl = gr.Slider( minimum=4.0, maximum=8.0, step=0.1, label="Sepal Length (in cm)" ) gr_sepw = gr.Slider( minimum=2.0, maximum=5.0, step=0.1, label="Sepal Width (in cm)" ) gr_petl = gr.Slider( minimum=1.0, maximum=7.0, step=0.1, label="Petal Length (in cm)" ) gr_petw = gr.Slider( minimum=0.1, maximum=2.8, step=0.1, label="Petal Width (in cm)" ) with gr.Column(): with gr.Row(): gr_execution_type = gr.Radio( ["Local", "AWS API"], value="Local", label="Prediction type" ) with gr.Row(): gr_output = gr.Textbox(label="Prediction output") with gr.Row(): submit_btn = gr.Button("Submit") clear_button = gr.ClearButton() submit_btn.click( fn=predict, inputs=[gr_sepl, gr_sepw, gr_petl, gr_petw, gr_execution_type], outputs=[gr_output], ) clear_button.click(lambda: None, inputs=None, outputs=[gr_output], queue=False) demo.queue().launch(debug=True) if __name__ == "__main__": retrieve_api() user_interface()