Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
import google.generativeai as genai
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
from huggingface_hub import HfFolder
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import traceback
|
10 |
+
import pytesseract
|
11 |
+
import cv2
|
12 |
+
import time
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Set API key for Gemini
|
18 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") or HfFolder.get_token("GEMINI_API_KEY")
|
19 |
+
if not GEMINI_API_KEY:
|
20 |
+
raise ValueError("Gemini API key not found. Please set the GEMINI_API_KEY environment variable.")
|
21 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
22 |
+
|
23 |
+
# Define model names - using latest models
|
24 |
+
CLASSIFICATION_MODEL = "gemini-1.5-flash" # For classification
|
25 |
+
SOLUTION_MODEL = "gemini-1.5-pro-latest" # For solution generation
|
26 |
+
EXPLANATION_MODEL = "gemini-1.5-pro-latest" # For explanation generation
|
27 |
+
SIMILAR_MODEL = "gemini-1.5-pro-latest" # For similar problems generation
|
28 |
+
|
29 |
+
print(f"Using models: Classification: {CLASSIFICATION_MODEL}, Solution: {SOLUTION_MODEL}, Explanation: {EXPLANATION_MODEL}, Similar: {SIMILAR_MODEL}")
|
30 |
+
|
31 |
+
# Set up Gemini for image analysis
|
32 |
+
MODEL_IMAGE = "gemini-1.5-pro-latest" # Use Gemini for OCR as well
|
33 |
+
|
34 |
+
# Set Tesseract path - Mac with Homebrew default
|
35 |
+
pytesseract.pytesseract.tesseract_cmd = '/opt/homebrew/bin/tesseract'
|
36 |
+
|
37 |
+
# Extract text using Gemini directly (with Tesseract as fallback)
|
38 |
+
def extract_text_with_gemini(image):
|
39 |
+
"""Extract text from image using Gemini Pro Vision directly"""
|
40 |
+
try:
|
41 |
+
if isinstance(image, np.ndarray):
|
42 |
+
image = Image.fromarray(image)
|
43 |
+
|
44 |
+
model = genai.GenerativeModel(MODEL_IMAGE)
|
45 |
+
prompt = """
|
46 |
+
Extract ALL text, numbers, and mathematical equations from this image precisely.
|
47 |
+
Include ALL symbols, numbers, letters, and mathematical notation exactly as they appear.
|
48 |
+
Format any equations properly and maintain their layout.
|
49 |
+
Don't explain the content, just extract the text verbatim.
|
50 |
+
"""
|
51 |
+
|
52 |
+
response = model.generate_content([prompt, image])
|
53 |
+
extracted_text = response.text.strip()
|
54 |
+
|
55 |
+
# If Gemini returns a very short result, try Tesseract as fallback
|
56 |
+
if len(extracted_text) < 10:
|
57 |
+
print("Gemini returned limited text, trying Tesseract as fallback")
|
58 |
+
if isinstance(image, Image.Image):
|
59 |
+
image_array = np.array(image)
|
60 |
+
else:
|
61 |
+
image_array = image
|
62 |
+
|
63 |
+
if len(image_array.shape) == 3:
|
64 |
+
gray = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY)
|
65 |
+
else:
|
66 |
+
gray = image_array
|
67 |
+
|
68 |
+
custom_config = r'--oem 1 --psm 6'
|
69 |
+
tesseract_text = pytesseract.image_to_string(gray, config=custom_config)
|
70 |
+
|
71 |
+
if len(tesseract_text) > len(extracted_text):
|
72 |
+
extracted_text = tesseract_text
|
73 |
+
|
74 |
+
print(f"Extracted text: {extracted_text[:100]}...")
|
75 |
+
return extracted_text
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Extraction Error: {e}")
|
79 |
+
print(traceback.format_exc())
|
80 |
+
try:
|
81 |
+
if isinstance(image, Image.Image):
|
82 |
+
image_array = np.array(image)
|
83 |
+
else:
|
84 |
+
image_array = image
|
85 |
+
|
86 |
+
if len(image_array.shape) == 3:
|
87 |
+
gray = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY)
|
88 |
+
else:
|
89 |
+
gray = image_array
|
90 |
+
|
91 |
+
return pytesseract.image_to_string(gray, config=r'--oem 1 --psm 6')
|
92 |
+
except Exception as e2:
|
93 |
+
print(f"Fallback OCR Error: {e2}")
|
94 |
+
return f"Error extracting text: {str(e)}"
|
95 |
+
|
96 |
+
# Classify the math problem using Gemini 1.5 Flash
|
97 |
+
def classify_with_gemini_flash(math_problem):
|
98 |
+
"""Classify the math problem using Gemini model"""
|
99 |
+
try:
|
100 |
+
model = genai.GenerativeModel(
|
101 |
+
model_name=CLASSIFICATION_MODEL,
|
102 |
+
generation_config={
|
103 |
+
"temperature": 0.1,
|
104 |
+
"top_p": 0.95,
|
105 |
+
"max_output_tokens": 150,
|
106 |
+
"response_mime_type": "application/json",
|
107 |
+
}
|
108 |
+
)
|
109 |
+
|
110 |
+
prompt = f"""
|
111 |
+
Task: Classify the following math problem.
|
112 |
+
|
113 |
+
PROBLEM: {math_problem}
|
114 |
+
|
115 |
+
Classify this math problem according to:
|
116 |
+
1. Primary category (e.g., Algebra, Calculus, Geometry, Trigonometry, Statistics, Number Theory)
|
117 |
+
2. Specific subtopic (e.g., Linear Equations, Derivatives, Integrals, Probability)
|
118 |
+
3. Difficulty level (Basic, Intermediate, Advanced)
|
119 |
+
4. Key concepts involved
|
120 |
+
|
121 |
+
Format the response as a JSON object with the fields: "category", "subtopic", "difficulty", "key_concepts".
|
122 |
+
"""
|
123 |
+
|
124 |
+
response = model.generate_content(prompt)
|
125 |
+
try:
|
126 |
+
classification = json.loads(response.text)
|
127 |
+
return classification
|
128 |
+
except json.JSONDecodeError:
|
129 |
+
print(f"JSON Decode Error: Unable to parse response: {response.text}")
|
130 |
+
return {
|
131 |
+
"category": "Unknown",
|
132 |
+
"subtopic": "Unknown",
|
133 |
+
"difficulty": "Unknown",
|
134 |
+
"key_concepts": ["Unknown"]
|
135 |
+
}
|
136 |
+
except Exception as e:
|
137 |
+
print(f"Classification Error: {e}")
|
138 |
+
print(traceback.format_exc())
|
139 |
+
return {
|
140 |
+
"category": "Error",
|
141 |
+
"subtopic": "Error",
|
142 |
+
"difficulty": "Error",
|
143 |
+
"key_concepts": [f"Error: {str(e)}"]
|
144 |
+
}
|
145 |
+
|
146 |
+
# Solve the math problem using Gemini model
|
147 |
+
def solve_with_gemini_pro(math_problem, classification):
|
148 |
+
"""Solve the math problem using Gemini model"""
|
149 |
+
try:
|
150 |
+
model = genai.GenerativeModel(
|
151 |
+
model_name=SOLUTION_MODEL,
|
152 |
+
generation_config={
|
153 |
+
"temperature": 0.2,
|
154 |
+
"top_p": 0.9,
|
155 |
+
"max_output_tokens": 1000,
|
156 |
+
}
|
157 |
+
)
|
158 |
+
|
159 |
+
# Ensure classification has the required fields with fallbacks
|
160 |
+
if not isinstance(classification, dict):
|
161 |
+
classification = {
|
162 |
+
"category": "Unknown",
|
163 |
+
"subtopic": "Unknown",
|
164 |
+
"difficulty": "Unknown",
|
165 |
+
"key_concepts": ["Unknown"]
|
166 |
+
}
|
167 |
+
|
168 |
+
for field in ["category", "subtopic", "difficulty"]:
|
169 |
+
if field not in classification or not classification[field]:
|
170 |
+
classification[field] = "Unknown"
|
171 |
+
|
172 |
+
if "key_concepts" not in classification or not classification["key_concepts"]:
|
173 |
+
classification["key_concepts"] = ["Unknown"]
|
174 |
+
|
175 |
+
# Format key concepts as a string
|
176 |
+
if isinstance(classification["key_concepts"], list):
|
177 |
+
key_concepts = ", ".join(classification["key_concepts"])
|
178 |
+
else:
|
179 |
+
key_concepts = str(classification["key_concepts"])
|
180 |
+
|
181 |
+
prompt = f"""
|
182 |
+
Task: Solve the following math problem with clear step-by-step explanations.
|
183 |
+
|
184 |
+
PROBLEM: {math_problem}
|
185 |
+
|
186 |
+
CLASSIFICATION:
|
187 |
+
- Category: {classification["category"]}
|
188 |
+
- Subtopic: {classification["subtopic"]}
|
189 |
+
- Difficulty: {classification["difficulty"]}
|
190 |
+
- Key Concepts: {key_concepts}
|
191 |
+
|
192 |
+
Provide a complete solution following these guidelines:
|
193 |
+
1. Start with an overview of the approach
|
194 |
+
2. Break down the problem into clear, logical steps
|
195 |
+
3. Explain each step thoroughly, mentioning the mathematical principles applied
|
196 |
+
4. Show all work and calculations
|
197 |
+
5. Verify the answer if possible
|
198 |
+
6. Summarize the key takeaway from this problem
|
199 |
+
|
200 |
+
Format the solution to be readable on a mobile device, with appropriate spacing between steps.
|
201 |
+
"""
|
202 |
+
|
203 |
+
response = model.generate_content(prompt)
|
204 |
+
return response.text
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Solution Error: {e}")
|
207 |
+
print(traceback.format_exc())
|
208 |
+
return f"Error generating solution: {str(e)}"
|
209 |
+
|
210 |
+
# Explain the solution in more detail
|
211 |
+
def explain_solution(math_problem, solution):
|
212 |
+
"""Provide a more detailed explanation of the solution"""
|
213 |
+
try:
|
214 |
+
print(f"Generating detailed explanation...")
|
215 |
+
|
216 |
+
model = genai.GenerativeModel(
|
217 |
+
model_name=EXPLANATION_MODEL,
|
218 |
+
generation_config={
|
219 |
+
"temperature": 0.3,
|
220 |
+
"top_p": 0.95,
|
221 |
+
"max_output_tokens": 1500,
|
222 |
+
}
|
223 |
+
)
|
224 |
+
|
225 |
+
prompt = f"""
|
226 |
+
Task: Provide a more detailed explanation of the solution to this math problem.
|
227 |
+
|
228 |
+
PROBLEM: {math_problem}
|
229 |
+
SOLUTION: {solution}
|
230 |
+
|
231 |
+
Provide a more comprehensive explanation that:
|
232 |
+
1. Breaks down complex steps into simpler components
|
233 |
+
2. Explains the underlying mathematical principles in depth
|
234 |
+
3. Connects this problem to fundamental concepts
|
235 |
+
4. Offers visual or intuitive ways to understand the concepts
|
236 |
+
5. Highlights common mistakes students make with this type of problem
|
237 |
+
6. Suggests alternative solution approaches if applicable
|
238 |
+
|
239 |
+
Make the explanation accessible to a student who is struggling with this topic.
|
240 |
+
"""
|
241 |
+
|
242 |
+
response = model.generate_content(prompt)
|
243 |
+
return response.text
|
244 |
+
except Exception as e:
|
245 |
+
print(f"Explanation Error: {e}")
|
246 |
+
print(traceback.format_exc())
|
247 |
+
return f"Error generating explanation: {str(e)}"
|
248 |
+
|
249 |
+
# Generate similar practice problems
|
250 |
+
def generate_similar_problems(math_problem, classification):
|
251 |
+
"""Generate similar practice math problems"""
|
252 |
+
try:
|
253 |
+
print(f"Generating similar problems...")
|
254 |
+
|
255 |
+
model = genai.GenerativeModel(
|
256 |
+
model_name=SIMILAR_MODEL,
|
257 |
+
generation_config={
|
258 |
+
"temperature": 0.7,
|
259 |
+
"top_p": 0.95,
|
260 |
+
"max_output_tokens": 1000,
|
261 |
+
}
|
262 |
+
)
|
263 |
+
|
264 |
+
# Prepare classification string
|
265 |
+
classification_str = json.dumps(classification, indent=2)
|
266 |
+
|
267 |
+
prompt = f"""
|
268 |
+
Task: Generate similar practice math problems based on the following problem.
|
269 |
+
|
270 |
+
ORIGINAL PROBLEM: {math_problem}
|
271 |
+
CLASSIFICATION: {classification_str}
|
272 |
+
|
273 |
+
Generate 3 similar practice problems that:
|
274 |
+
1. Cover the same mathematical concepts and principles
|
275 |
+
2. Vary in difficulty (one easier, one similar, one harder)
|
276 |
+
3. Use different numerical values or variables
|
277 |
+
4. Test the same underlying skills
|
278 |
+
|
279 |
+
For each problem:
|
280 |
+
- Provide the complete problem statement
|
281 |
+
- Include a brief hint for solving it
|
282 |
+
- Provide the correct answer (but not the full solution)
|
283 |
+
|
284 |
+
Format as three separate problems with clear numbering.
|
285 |
+
"""
|
286 |
+
|
287 |
+
response = model.generate_content(prompt)
|
288 |
+
return response.text
|
289 |
+
except Exception as e:
|
290 |
+
print(f"Similar Problems Error: {e}")
|
291 |
+
print(traceback.format_exc())
|
292 |
+
return f"Error generating similar problems: {str(e)}"
|
293 |
+
|
294 |
+
# Main function for processing images
|
295 |
+
def process_image(image, progress=gr.Progress()):
|
296 |
+
"""Main processing pipeline for the NerdAI app"""
|
297 |
+
try:
|
298 |
+
if image is None:
|
299 |
+
return None, "No image uploaded", "No image uploaded", "No image uploaded", "No image uploaded"
|
300 |
+
|
301 |
+
progress(0, desc="Starting processing...")
|
302 |
+
|
303 |
+
# Step 1: Extract text with Gemini model
|
304 |
+
progress(0.4, desc="Extracting text with Gemini Pro Vision...")
|
305 |
+
extracted_text = extract_text_with_gemini(image)
|
306 |
+
|
307 |
+
if not extracted_text or extracted_text.strip() == "":
|
308 |
+
return image, "No text was extracted from the image. Please try a clearer image.", "No text extracted", "No text was extracted from the image.", ""
|
309 |
+
|
310 |
+
# Step 2: Classify with Gemini model
|
311 |
+
progress(0.6, desc=f"Classifying problem with {CLASSIFICATION_MODEL}...")
|
312 |
+
classification = classify_with_gemini_flash(extracted_text)
|
313 |
+
classification_json = json.dumps(classification, indent=2)
|
314 |
+
|
315 |
+
# Step 3: Solve with Gemini model
|
316 |
+
progress(0.8, desc=f"Solving problem with {SOLUTION_MODEL}...")
|
317 |
+
solution = solve_with_gemini_pro(extracted_text, classification)
|
318 |
+
|
319 |
+
# Complete
|
320 |
+
progress(1.0, desc="Processing complete")
|
321 |
+
|
322 |
+
return image, extracted_text, classification_json, solution, extracted_text
|
323 |
+
|
324 |
+
except Exception as e:
|
325 |
+
print(f"Process Image Error: {e}")
|
326 |
+
print(traceback.format_exc())
|
327 |
+
return None, f"Error processing image: {str(e)}", "Error", "Error", ""
|
328 |
+
|
329 |
+
# Create the Gradio interface
|
330 |
+
with gr.Blocks(title="NerdAI Math Problem Solver") as demo:
|
331 |
+
gr.Markdown("# NerdAI Math Problem Solver")
|
332 |
+
gr.Markdown("Upload an image of a math problem to get a step-by-step solution")
|
333 |
+
|
334 |
+
# Store state variables
|
335 |
+
extracted_text_state = gr.State("")
|
336 |
+
|
337 |
+
with gr.Row():
|
338 |
+
with gr.Column(scale=1):
|
339 |
+
# Input section
|
340 |
+
input_image = gr.Image(label="Upload Math Problem Image", type="pil")
|
341 |
+
process_btn = gr.Button("Process Image", variant="primary")
|
342 |
+
|
343 |
+
with gr.Column(scale=1):
|
344 |
+
# Processed image output
|
345 |
+
processed_image = gr.Image(label="Processed Image")
|
346 |
+
|
347 |
+
with gr.Row():
|
348 |
+
# Text extraction output
|
349 |
+
extracted_text = gr.Textbox(label="Extracted Text", lines=3)
|
350 |
+
|
351 |
+
with gr.Row():
|
352 |
+
# Classification output
|
353 |
+
classification = gr.Textbox(label=f"Problem Classification", lines=6)
|
354 |
+
|
355 |
+
with gr.Row():
|
356 |
+
# Solution output
|
357 |
+
solution = gr.Markdown(label="Solution")
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
explain_btn = gr.Button("Explain It", variant="secondary")
|
361 |
+
similar_btn = gr.Button("Similar Questions", variant="secondary")
|
362 |
+
|
363 |
+
with gr.Row():
|
364 |
+
# Additional outputs
|
365 |
+
with gr.Tabs():
|
366 |
+
with gr.TabItem("Detailed Explanation"):
|
367 |
+
explanation = gr.Markdown()
|
368 |
+
with gr.TabItem("Similar Practice Problems"):
|
369 |
+
similar_problems = gr.Markdown()
|
370 |
+
|
371 |
+
# Event handlers for the buttons
|
372 |
+
def explain_button_handler(math_problem, solution_text):
|
373 |
+
"""Handler for Explain It button"""
|
374 |
+
print(f"Explain button clicked")
|
375 |
+
if not math_problem or math_problem == "No image uploaded":
|
376 |
+
return "Please process an image first"
|
377 |
+
return explain_solution(math_problem, solution_text)
|
378 |
+
|
379 |
+
def similar_button_handler(math_problem, classification_json):
|
380 |
+
"""Handler for Similar Questions button"""
|
381 |
+
print(f"Similar button clicked")
|
382 |
+
if not math_problem or math_problem == "No image uploaded":
|
383 |
+
return "Please process an image first"
|
384 |
+
try:
|
385 |
+
# Parse classification JSON
|
386 |
+
try:
|
387 |
+
classification = json.loads(classification_json)
|
388 |
+
except:
|
389 |
+
classification = {
|
390 |
+
"category": "Unknown",
|
391 |
+
"subtopic": "Unknown",
|
392 |
+
"difficulty": "Unknown",
|
393 |
+
"key_concepts": ["Unknown"]
|
394 |
+
}
|
395 |
+
|
396 |
+
# Validate classification
|
397 |
+
if not isinstance(classification, dict):
|
398 |
+
classification = {
|
399 |
+
"category": "Unknown",
|
400 |
+
"subtopic": "Unknown",
|
401 |
+
"difficulty": "Unknown",
|
402 |
+
"key_concepts": ["Unknown"]
|
403 |
+
}
|
404 |
+
|
405 |
+
# Ensure fields exist
|
406 |
+
for field in ["category", "subtopic", "difficulty"]:
|
407 |
+
if field not in classification or not classification[field]:
|
408 |
+
classification[field] = "Unknown"
|
409 |
+
|
410 |
+
if "key_concepts" not in classification or not classification["key_concepts"]:
|
411 |
+
classification["key_concepts"] = ["Unknown"]
|
412 |
+
|
413 |
+
return generate_similar_problems(math_problem, classification)
|
414 |
+
except Exception as e:
|
415 |
+
print(f"Error in similar_button_handler: {e}")
|
416 |
+
print(traceback.format_exc())
|
417 |
+
return f"Error generating similar problems: {str(e)}"
|
418 |
+
|
419 |
+
# Set up event handlers
|
420 |
+
process_btn.click(
|
421 |
+
fn=process_image,
|
422 |
+
inputs=[input_image],
|
423 |
+
outputs=[processed_image, extracted_text, classification, solution, extracted_text_state]
|
424 |
+
)
|
425 |
+
|
426 |
+
explain_btn.click(
|
427 |
+
fn=explain_button_handler,
|
428 |
+
inputs=[extracted_text_state, solution],
|
429 |
+
outputs=explanation
|
430 |
+
)
|
431 |
+
|
432 |
+
similar_btn.click(
|
433 |
+
fn=similar_button_handler,
|
434 |
+
inputs=[extracted_text_state, classification],
|
435 |
+
outputs=similar_problems
|
436 |
+
)
|
437 |
+
|
438 |
+
# Launch the app
|
439 |
+
if __name__ == "__main__":
|
440 |
+
demo.launch()
|