# Copyright (c) 2022 Horizon Robotics. (authors: Binbin Zhang) # 2022 Chengdong Liang (liangchengdong@mail.nwpu.edu.cn) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import gradio as gr import wenetruntime as wenet import librosa wenet.set_log_level(2) decoder_cn = wenet.Decoder(lang='chs') decoder_en = wenet.Decoder(lang='en') def recognition(audio, lang='CN'): if audio is None: return "Input Error! Please enter one audio!" y, _ = librosa.load(audio, sr=16000) # NOTE: model supports 16k sample_rate y = (y * (1 << 15)).astype("int16") if lang == 'CN': ans = decoder_cn.decode(y.tobytes(), True) elif lang == 'EN': ans = decoder_en.decode(y.tobytes(), True) else: return "ERROR! Please select a language!" if ans is None: return "ERROR! No text output! Please try again!" # NOTE: ans (json) # { # 'nbest' : [{"sentence" : ""}], 'type' : 'final_result # } ans = json.loads(ans) txt = ans['nbest'][0]['sentence'] return txt # input inputs = [ gr.inputs.Audio(source="microphone", type="filepath", label='Input audio'), gr.Radio(['EN', 'CN'], label='Language') ] output = gr.outputs.Textbox(label="Output Text") examples = [ ['examples/BAC009S0767W0127.wav', 'CN'], ['examples/BAC009S0767W0424.wav', 'CN'], ['examples/BAC009S0767W0488.wav', 'CN'], ['examples/1995-1836-0002.flac', 'EN'], ['examples/61-70968-0000.flac', 'EN'], ['examples/672-122797-0000.flac', 'EN'], ] text = "Speech Recognition in WeNet | 基于 WeNet 的语音识别" # description description = ( "Wenet Demo ! This is a speech recognition demo that supports Mandarin and English !" ) article = ( "
") interface = gr.Interface( fn=recognition, inputs=inputs, outputs=output, title=text, description=description, article=article, examples=examples, theme='huggingface', ) interface.launch(enable_queue=True)