Spaces:
Runtime error
Runtime error
| import json | |
| import gradio as gr | |
| import numpy as np | |
| import wenetruntime as wenet | |
| wenet.set_log_level(2) | |
| decoder = wenet.Decoder(lang='chs') | |
| def recognition(audio): | |
| print(audio) | |
| if audio is None: | |
| return "Input Error! Please enter one audio!" | |
| sr, y = audio | |
| assert sr in [48000, 16000] | |
| if sr == 48000: # Optional resample to 16000 | |
| y = (y / max(np.max(y), 1) * 32767)[::3].astype("int16") | |
| ans = decoder.decode(y.tobytes(), True) | |
| if ans == None: | |
| return "ERROR! No text output! Please try again!" | |
| # ans (json) | |
| # { | |
| # 'nbest' : [{"sentence" : ""}], 'type' : 'final_result | |
| # } | |
| ans = json.loads(ans) | |
| print(ans) | |
| txt = ans['nbest'][0]['sentence'] | |
| return txt | |
| # input | |
| inputs = [ | |
| gr.inputs.Audio(source="microphone", | |
| type="numpy", | |
| label='Speaker#1') | |
| ] | |
| output = gr.outputs.Textbox(label="Output Text") | |
| # examples = ['examples/BAC009S0764W0121.wav'] | |
| text = "Speech Recognition in WeNet | 基于 WeNet 的语音识别" | |
| # description | |
| description = ("WeSpeaker Demo ! Try it with your own voice !") | |
| article = ( | |
| "<p style='text-align: center'>" | |
| "<a href='https://github.com/wenet-e2e/wespeaker' target='_blank'>Github: Learn more about WeSpeaker</a>" | |
| "</p>") | |
| interface = gr.Interface( | |
| fn=recognition, | |
| inputs=inputs, | |
| outputs=output, | |
| title=text, | |
| description=description, | |
| article=article, | |
| theme='huggingface', | |
| ) | |
| interface.launch(enable_queue=True) | |