Spaces:
Runtime error
Runtime error
first app with image generation in portuguese
Browse files
app.py
CHANGED
@@ -1,4 +1,77 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
DIFFUSION_MODEL_ID = "runwayml/stable-diffusion-v1-5"
|
6 |
+
TRANSLATION_MODEL_ID = "Narrativa/mbart-large-50-finetuned-opus-pt-en-translation" # noqa
|
7 |
+
|
8 |
+
|
9 |
+
def load_translation_models(translation_model_id):
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
+
translation_model_id,
|
12 |
+
use_auth_token=True
|
13 |
+
)
|
14 |
+
text_model = AutoModelForSeq2SeqLM.from_pretrained(
|
15 |
+
translation_model_id,
|
16 |
+
use_auth_token=True
|
17 |
+
)
|
18 |
+
|
19 |
+
return tokenizer, text_model
|
20 |
+
|
21 |
+
|
22 |
+
def pipeline_generate(diffusion_model_id):
|
23 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
24 |
+
diffusion_model_id,
|
25 |
+
use_auth_token=True
|
26 |
+
)
|
27 |
+
pipe = pipe.to("mps")
|
28 |
+
|
29 |
+
# Recommended if your computer has < 64 GB of RAM
|
30 |
+
pipe.enable_attention_slicing()
|
31 |
+
|
32 |
+
return pipe
|
33 |
+
|
34 |
+
|
35 |
+
def translate(prompt, tokenizer, text_model):
|
36 |
+
pt_tokens = tokenizer([prompt], return_tensors="pt")
|
37 |
+
en_tokens = text_model.generate(
|
38 |
+
**pt_tokens, max_new_tokens=100,
|
39 |
+
num_beams=8, early_stopping=True
|
40 |
+
)
|
41 |
+
en_prompt = tokenizer.batch_decode(en_tokens, skip_special_tokens=True)
|
42 |
+
print(f"translation: [PT] {prompt} -> [EN] {en_prompt[0]}")
|
43 |
+
|
44 |
+
return en_prompt[0]
|
45 |
+
|
46 |
+
|
47 |
+
def generate_image(pipe, prompt):
|
48 |
+
# First-time "warmup" pass (see explanation above)
|
49 |
+
_ = pipe(prompt, num_inference_steps=1)
|
50 |
+
|
51 |
+
return pipe(prompt).images[0]
|
52 |
+
|
53 |
+
|
54 |
+
def process_prompt(prompt):
|
55 |
+
tokenizer, text_model = load_translation_models(TRANSLATION_MODEL_ID)
|
56 |
+
prompt = translate(prompt, tokenizer, text_model)
|
57 |
+
pipe = pipeline_generate(DIFFUSION_MODEL_ID)
|
58 |
+
image = generate_image(pipe, prompt)
|
59 |
+
return image
|
60 |
+
|
61 |
+
|
62 |
+
st.write("# Crie imagens com Stable Diffusion")
|
63 |
+
prompt_input = st.text_input("Escreva uma descrição da imagem")
|
64 |
+
|
65 |
+
placeholder = st.empty()
|
66 |
+
btn = placeholder.button('Processar imagem', disabled=False, key=1)
|
67 |
+
reload = st.button('Reiniciar', disabled=False)
|
68 |
+
|
69 |
+
if btn:
|
70 |
+
placeholder.button('Processar imagem', disabled=True, key=2)
|
71 |
+
image = process_prompt(prompt_input)
|
72 |
+
st.image(image)
|
73 |
+
placeholder.button('Processar imagem', disabled=False, key=3)
|
74 |
+
placeholder.empty()
|
75 |
+
|
76 |
+
if reload:
|
77 |
+
st.experimental_rerun()
|