import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error, mean_absolute_error from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM, Dropout from datetime import timedelta # Title and description st.title("Stock Price Prediction with LSTM") st.write("This application uses LSTM (Long Short-Term Memory) neural networks to predict stock prices.") # Load the data directly (replace 'AAPL_dataset_copied.csv' with your actual file path) data = pd.read_csv('AAPL_dataset_copied.csv') # Convert 'date' column to datetime and set as index data['date'] = pd.to_datetime(data['date']) data.set_index('date', inplace=True) # Select only the 'Close' column data = data[['close']] # Show the first few rows of the dataset st.subheader("Dataset Preview") st.write(data.head()) # Normalize the data for faster convergence scaler = MinMaxScaler(feature_range=(0, 1)) data['close_scaled'] = scaler.fit_transform(data[['close']]) # Split data into training (70%), validation (15%), and testing (15%) sets train_size = int(len(data) * 0.7) val_size = int(len(data) * 0.15) train_data = data['close_scaled'][:train_size].values.reshape(-1, 1) val_data = data['close_scaled'][train_size:train_size + val_size].values.reshape(-1, 1) test_data = data['close_scaled'][train_size + val_size:].values.reshape(-1, 1) # Function to create sequences for LSTM def create_sequences(dataset, time_step=60): X, Y = [], [] for i in range(len(dataset) - time_step): X.append(dataset[i:(i + time_step), 0]) Y.append(dataset[i + time_step, 0]) return np.array(X), np.array(Y) # Define time step (e.g., 60 days) time_step = 60 X_train, y_train = create_sequences(train_data, time_step) X_val, y_val = create_sequences(val_data, time_step) X_test, y_test = create_sequences(test_data, time_step) # Reshape input to be [samples, time steps, features] for LSTM X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], 1) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) # Build the LSTM model with Dropout for regularization model = Sequential([ LSTM(100, return_sequences=True, input_shape=(X_train.shape[1], 1)), Dropout(0.2), LSTM(50, return_sequences=True), Dropout(0.2), LSTM(50, return_sequences=False), Dropout(0.2), Dense(25), Dense(1) ]) # Compile the model with Adam optimizer and mean squared error loss model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mean_absolute_error']) # Train the model without EarlyStopping st.write("Training the LSTM model...") history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=50, batch_size=64, verbose=1) # Evaluate on the test data test_loss, test_mae = model.evaluate(X_test, y_test, verbose=0) # Make predictions on the test data train_predict = model.predict(X_train) val_predict = model.predict(X_val) test_predict = model.predict(X_test) # Inverse transform the predictions and actual values to original scale train_predict = scaler.inverse_transform(train_predict) val_predict = scaler.inverse_transform(val_predict) test_predict = scaler.inverse_transform(test_predict) y_train = scaler.inverse_transform([y_train]) y_val = scaler.inverse_transform([y_val]) y_test = scaler.inverse_transform([y_test]) # Calculate evaluation metrics train_rmse = np.sqrt(mean_squared_error(y_train[0], train_predict[:,0])) val_rmse = np.sqrt(mean_squared_error(y_val[0], val_predict[:,0])) test_rmse = np.sqrt(mean_squared_error(y_test[0], test_predict[:,0])) train_mae = mean_absolute_error(y_train[0], train_predict[:,0]) val_mae = mean_absolute_error(y_val[0], val_predict[:,0]) test_mae = mean_absolute_error(y_test[0], test_predict[:,0]) # Mean Absolute Percentage Error (MAPE) as accuracy mape = np.mean(np.abs((y_test[0] - test_predict[:, 0]) / y_test[0])) * 100 accuracy = 100 - mape st.write(f"LSTM Model - Train RMSE: {train_rmse:.2f}, Train MAE: {train_mae:.2f}") st.write(f"LSTM Model - Validation RMSE: {val_rmse:.2f}, Validation MAE: {val_mae:.2f}") st.write(f"LSTM Model - Test RMSE: {test_rmse:.2f}, Test MAE: {test_mae:.2f}") st.write(f"LSTM Model - Test Accuracy: {accuracy:.2f}%") # Plot the results st.subheader("Prediction Results") plt.figure(figsize=(14,6)) plt.plot(data.index[:train_size], scaler.inverse_transform(train_data), label='Training Data') plt.plot(data.index[train_size + time_step:train_size + time_step + len(val_predict)], val_predict, label='Validation Predictions') plt.plot(data.index[train_size + val_size + time_step:], test_predict, label='Test Predictions') plt.plot(data.index[train_size + val_size + time_step:], y_test[0], label='Actual Test Data') plt.xlabel('Date') plt.ylabel('Stock Price') plt.legend(['Training Data', 'Validation Predictions', 'Test Predictions', 'Actual Test Data'], loc='upper left') st.pyplot(plt) # User-defined future prediction days num_days_to_predict = st.slider("Select the number of days to predict into the future", min_value=1, max_value=30, value=10) # Predict future prices for the next 'num_days_to_predict' days temp_input = np.array(test_data[-time_step:]).reshape(-1).tolist() lst_output = [] for i in range(num_days_to_predict): if len(temp_input) > time_step: x_input = np.array(temp_input[-time_step:]) x_input = x_input.reshape((1, time_step, 1)) yhat = model.predict(x_input, verbose=0) temp_input.append(yhat[0][0]) lst_output.append(yhat[0][0]) else: x_input = np.array(temp_input).reshape((1, time_step, 1)) yhat = model.predict(x_input, verbose=0) temp_input.append(yhat[0][0]) lst_output.append(yhat[0][0]) # Inverse transform future predictions to the original scale future_predictions = scaler.inverse_transform(np.array(lst_output).reshape(-1, 1)) # Generate dates for future predictions last_date = data.index[-1] future_dates = [last_date + timedelta(days=i) for i in range(1, num_days_to_predict + 1)] # Display future predictions with dates st.subheader(f"Future Predictions for the next {num_days_to_predict} days:") future_df = pd.DataFrame({'Date': future_dates, 'Predicted Price (LSTM)': future_predictions.flatten()}) st.write(future_df)