''' @Description: @Author: jiajunlong @Date: 2024-06-19 19:30:17 @LastEditTime: 2024-06-19 19:32:47 @LastEditors: jiajunlong ''' import argparse import hashlib import json from pathlib import Path import time from threading import Thread import logging import gradio as gr import torch from transformers import TextIteratorStreamer from tinyllava.utils import * from tinyllava.data import * from tinyllava.model import * DEFAULT_MODEL_PATH = "cpu4dream/llava-small-OpenELM-AIMv2-0.6B" block_css = """ #buttons button { min-width: min(120px,100%); } """ title_markdown = """ # Tiny Llava OpenELM-AIMv2 0.6B 🐛 ## Multimodal Image Question Answering on CPU This space demonstrates the capabilities of the [cpu4dream/llava-small-OpenELM-AIMv2-0.6B](https://huggingface.co/cpu4dream/llava-small-OpenELM-AIMv2-0.6B) model, trained using the [TinyLLaVA Framework](https://github.com/TinyLLaVA/TinyLLaVA_Factory). """ tos_markdown = """ ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. """ learn_more_markdown = """ ### License The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. """ ack_markdown = """ ### Acknowledgement The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community! """ def regenerate(state, image_process_mode): state.messages[-1]['value'] = None state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) def clear_history(): state = Message() return (state, state.to_gradio_chatbot(), "", None) def add_text(state, text, image, image_process_mode): if len(text) <= 0 and image is None: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None) text = text[:1536] # Hard cut-off if image is not None: text = text[:1200] # Hard cut-off for images if "" not in text: # text = '' + text text = text + "\n" if len(state.images) > 0: state = Message() state.add_image(image, len(state.messages)) state.add_message(text, None) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) def load_demo(): state = Message() return state @torch.inference_mode() def get_response(params): input_ids = params["input_ids"] prompt = params["prompt"] images = params.get("images", None) num_image_tokens = 0 if images is not None and len(images) > 0: if len(images) > 0: # image = [load_image_from_base64(img) for img in images][0] image = images[0][0] image = image_processor(image) image = image.unsqueeze(0).to(model.device, dtype=torch.float32) num_image_tokens = getattr(model.vision_tower._vision_tower, "num_patches", 336) else: image = None image_args = {"images": image} else: image = None image_args = {} temperature = float(params.get("temperature", 1.0)) top_p = float(params.get("top_p", 1.0)) max_context_length = getattr(model.config, "max_position_embeddings", 2048) max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) stop_str = params.get("stop", None) do_sample = True if temperature > 0.001 else False logger.info(prompt) input_ids = input_ids.unsqueeze(0).to(model.device) # keywords = [stop_str] # stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15 ) max_new_tokens = min( max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens ) if max_new_tokens < 1: yield json.dumps( { "text": prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0, } ).encode() + b"\0" return generate_kwargs = dict( inputs=input_ids, do_sample=do_sample, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, streamer=streamer, use_cache=True, pad_token_id = tokenizer.eos_token_id, **image_args, ) thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() logger.debug(prompt) logger.debug(generate_kwargs) generated_text = prompt for new_text in streamer: generated_text += new_text # print(f"new_text:{new_text}") if generated_text.endswith(stop_str): generated_text = generated_text[: -len(stop_str)] yield json.dumps({"text": generated_text, "error_code": 0}).encode() def http_bot(state, temperature, top_p, max_new_tokens): if state.skip_next: # This generate call is skipped due to invalid inputs yield (state, state.to_gradio_chatbot()) return images = state.images result = text_processor(state.messages, mode='eval') prompt = result['prompt'] input_ids = result['input_ids'] pload = { "model": model_name, "prompt": prompt, "input_ids": input_ids, "temperature": float(temperature), "top_p": float(top_p), "max_new_tokens": min(int(max_new_tokens), 1536), "stop": ( text_processor.template.separator.apply()[1] ), "images": images} state.messages[-1]['value'] = "▌" yield (state, state.to_gradio_chatbot()) # for stream output = get_response(pload) for chunk in output: if chunk: data = json.loads(chunk.decode()) if data["error_code"] == 0: output = data["text"][len(prompt) :].strip() state.messages[-1]['value'] = output + "▌" yield (state, state.to_gradio_chatbot()) else: output = data["text"] + f" (error_code: {data['error_code']})" state.messages[-1]['value'] = output yield (state, state.to_gradio_chatbot()) return time.sleep(0.03) state.messages[-1]['value'] = state.messages[-1]['value'][:-1] yield (state, state.to_gradio_chatbot()) def build_demo(): textbox = gr.Textbox( show_label=False, placeholder="Enter text and press ENTER", container=False ) with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo: state = gr.State() gr.Markdown(title_markdown) with gr.Row(): with gr.Column(scale=5): with gr.Row(elem_id="Model ID"): gr.Dropdown( choices=[DEFAULT_MODEL_PATH.split('/')[-1]], value=DEFAULT_MODEL_PATH.split('/')[-1], interactive=True, label="Model ID", container=False, ) imagebox = gr.Image(type="pil") image_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square image", visible=False, ) # cur_dir = os.path.dirname(os.path.abspath(__file__)) cur_dir = Path(__file__).parent gr.Examples( examples=[ [ f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?", ], [ f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?", ], ], inputs=[imagebox, textbox], ) with gr.Accordion("Parameters", open=False) as _: temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P", ) max_output_tokens = gr.Slider( minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens", ) with gr.Column(scale=8): chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=50): submit_btn = gr.Button(value="Send", variant="primary") with gr.Row(elem_id="buttons") as _: regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True) clear_btn = gr.Button(value="🗑️ Clear", interactive=True) gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) gr.Markdown(ack_markdown) regenerate_btn.click( regenerate, [state, image_process_mode], [state, chatbot, textbox, imagebox], queue=False, ).then( http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] ) clear_btn.click( clear_history, None, [state, chatbot, textbox, imagebox], queue=False ) textbox.submit( add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox], queue=False, ).then( http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] ) submit_btn.click( add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox], queue=False, ).then( http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] ) demo.load(load_demo, None, [state], queue=False) return demo def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default=None) parser.add_argument("--port", type=int, default=None) parser.add_argument("--share", default=None) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--conv-mode", type=str, default="phi") parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH) parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_PATH.split('/')[-1]) parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) logger = logging.getLogger(__name__) logger.info(gr.__version__) args = parse_args() model_name = args.model_name # DEFAULT_MODEL_PATH = args.model_path model, tokenizer, image_processor, context_len = load_pretrained_model( args.model_path, load_4bit=args.load_4bit, load_8bit=args.load_8bit ) model.to(args.device) model =model.to(torch.float32) image_processor = ImagePreprocess(image_processor, model.config) text_processor = TextPreprocess(tokenizer, args.conv_mode) demo = build_demo() demo.queue() demo.launch(server_name=args.host, server_port=args.port, share=args.share)