book-rater / app.py
conlan's picture
Add models and gitignore
6f53ea2
raw
history blame
1.94 kB
import pickle
import streamlit as st
import numpy as np
st.header("Book Recommender System")
model = pickle.load(open("artifacts/model.pkl", "rb"))
book_names = pickle.load(open("artifacts/book_names.pkl", "rb"))
final_ratings = pickle.load(open("artifacts/final_ratings.pkl", "rb"))
book_pivot = pickle.load(open("artifacts/book_pivot.pkl", "rb"))
def fetch_poster(suggestion):
bookNames = []
idsIndex = []
posterUrl = []
for bookId in suggestion[0]:
name = book_pivot.index[bookId]
bookNames.append(book_pivot.index[bookId])
for name in bookNames:
ids = np.where(final_ratings['title'] == name)[0][0]
idsIndex.append(ids)
for idx in idsIndex:
row = final_ratings.iloc[idx]
url = row['img_url']
posterUrl.append(url)
return posterUrl
def recommend_book(bookName):
bookList = []
book_id = np.where(book_pivot.index == bookName)[0][0]
distance, suggestion = model.kneighbors(book_pivot.iloc[book_id,:].values.reshape(1, -1), n_neighbors=5)
poster_url = fetch_poster(suggestion)
for i in range(len(suggestion)):
books = book_pivot.index[suggestion[i]]
for j in books:
bookList.append(j)
return bookList, poster_url
selected_books = st.selectbox(
"Select a book",
book_names
)
if st.button("Show Recommendations"):
recommendations, posterUrls = recommend_book(selected_books)
st.subheader("Recommendations")
col1, col2, col3, col4 = st.columns(4)
for url in posterUrls:
print(url)
with col1:
st.text(recommendations[1])
st.image(posterUrls[1])
with col2:
st.text(recommendations[2])
st.image(posterUrls[2])
with col3:
st.text(recommendations[3])
st.image(posterUrls[3])
with col4:
st.text(recommendations[4])
st.image(posterUrls[4])