import gradio as gr from evodiff.pretrained import OA_DM_38M, D3PM_UNIFORM_38M, MSA_OA_DM_MAXSUB from evodiff.generate import generate_oaardm, generate_d3pm from evodiff.generate_msa import generate_query_oadm_msa_simple import re def a3m_file(file): return "tmp.a3m" def make_uncond_seq(seq_len, model_type): if model_type == "EvoDiff-Seq-OADM 38M": checkpoint = OA_DM_38M() model, collater, tokenizer, scheme = checkpoint tokeinzed_sample, generated_sequence = generate_oaardm(model, tokenizer, seq_len, batch_size=1, device='cpu') if model_type == "EvoDiff-D3PM-Uniform 38M": checkpoint = D3PM_UNIFORM_38M(return_all=True) model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, seq_len, batch_size=1, device='cpu') return generated_sequence def make_cond_seq(seq_len, msa_file, model_type): if model_type == "EvoDiff-MSA": checkpoint = MSA_OA_DM_MAXSUB() model, collater, tokenizer, scheme = checkpoint tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, n_sequences=64, seq_length=seq_len, device='cpu', selection_type='random') return generated_sequence usg_app = gr.Interface( fn=make_uncond_seq, inputs=[ gr.Slider(10, 100, label = "Sequence Length"), gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], type="value", label = "Model") ], outputs="text", title = "Unconditional sequence generation", description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models." ) csg_app = gr.Interface( fn=make_cond_seq, inputs=[ gr.Slider(10, 100, label = "Sequence Length"), gr.File(file_types=["a3m"], label = "MSA File"), gr.Dropdown(["EvoDiff-MSA"], type="value", label = "Model") ], outputs="text", examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]], title = "Conditional sequence generation", description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model." ) with gr.Blocks() as edapp: with gr.Row(): gr.Markdown( """ # EvoDiff ## Generation of protein sequences and evolutionary alignments via discrete diffusion models Created By: Microsoft Research [Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, ProfileAva P. Amini, and Kevin K. Yang] Spaces App By: [Colby T. Ford](httos://github.com/colbyford) """ ) with gr.Row(): gr.TabbedInterface([usg_app, csg_app], ["Unconditional sequence generation", "Conditional generation"]) if __name__ == "__main__": edapp.launch()