import gradio as gr from evodiff.pretrained import OA_DM_38M, D3PM_UNIFORM_38M from evodiff.generate import generate_oaardm, generate_d3pm def make_seq(seq_len, model_type): if model_type == "EvoDiff-Seq-OADM 38M": checkpoint = OA_DM_38M() model, collater, tokenizer, scheme = checkpoint tokeinzed_sample, generated_sequence = generate_oaardm(model, tokenizer, seq_len, batch_size=1, device='cpu') if model_type == "EvoDiff-D3PM-Uniform 38M": checkpoint = D3PM_UNIFORM_38M(return_all=True) model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, seq_len, batch_size=1, device='cpu') return generated_sequence # iface = gr.Interface( # fn=make_seq, # inputs=gr.Slider(10, 100), # outputs="text" # ) # iface.launch() with gr.Blocks() as edapp: with gr.Row(): gr.Markdown( """ # EvoDiff ## Generation of protein sequences and evolutionary alignments via discrete diffusion models Created By: Microsoft Research [Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, ProfileAva P. Amini, and Kevin K. Yang] Spaces App By: Colby T. Ford """ ) with gr.Row(): gr.Markdown( """ ## Unconditional sequence generation Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller) or `EvoDiff-D3PM-Uniform 38M` (larger) models. """) gr.Interface( fn=make_seq, inputs=[ gr.Slider(10, 100, label = "Sequence Length"), gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], type="value", label = "Model") ], outputs="text" ) if __name__ == "__main__": edapp.launch()