import gradio as gr import lemminflect import spacy import wikipedia from transformers import pipeline nlp = spacy.load("en_core_web_lg") sentiment_analyzer = pipeline( "sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", revision="af0f99b" ) def is_positive(text): return sentiment_analyzer(text)[0]["label"] == "POSITIVE" def make_past_tense(token): if token.tag_ in ("VBP", "VBZ"): return f'{token._.inflect("VBD")} ' return token.text_with_ws def make_dystopian(term, text): doc = nlp(text) if is_positive(term): return "".join([make_past_tense(token) for token in doc]) return doc.text def get_dystopian_summary(term): if term == "": return term try: results = wikipedia.search(term, results=1) except wikipedia.exceptions.DisambiguationError as e: raise gr.Error(e.error) if len(results) == 0: raise gr.Error( f'Could not find an article on the term "{term}". ' 'Try searching for a different topic.' ) summary = wikipedia.summary( results[0], sentences=1, auto_suggest=False, redirect=True ) return make_dystopian(term, summary) def launch_demo(**kwargs): title = "Dystopedia" description = ( "Make any Wikipedia topic dystopian. Inspired by " "[this Tweet](https://twitter.com/lbcyber/status/1115015586243862528). " "Dystopedia uses [DistilBERT base uncased finetuned SST-2](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) " "for sentiment analysis and is subject to its limitations and biases." ) examples = [["joy"], ["hope"], ["peace"], ["Earth"], ["water"], ["food"]] gr.Interface( fn=get_dystopian_summary, inputs=gr.Textbox(label="term", placeholder="Enter a term...", max_lines=1), outputs=gr.Textbox(label="description"), title=title, description=description, examples=examples, cache_examples=True, allow_flagging="never", ).launch(**kwargs) launch_demo(show_error=True)