deeksonparlma
commited on
Commit
·
748c41a
1
Parent(s):
4e8eb95
default to previous build
Browse files
app.py
CHANGED
@@ -1,197 +1,28 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# def greet(name):
|
4 |
-
# return "Hello " + name + "!!"
|
5 |
-
|
6 |
-
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
# iface.launch()
|
8 |
-
# model = AutoModelForSequenceClassification.from_pretrained("tabibu-ai/mental-health-chatbot")
|
9 |
-
|
10 |
-
# write a gradio interface for tabibu-ai/mental-health-chatbot in huggingfacehub
|
11 |
-
|
12 |
-
# Path: app.py
|
13 |
-
|
14 |
-
|
15 |
-
# -----------------------------------
|
16 |
-
# import pickle
|
17 |
-
|
18 |
-
# import numpy as np
|
19 |
-
# import gradio as gr
|
20 |
-
|
21 |
-
# # install transformers and torch in requirements.txt
|
22 |
-
|
23 |
-
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
24 |
-
# from sklearn.feature_extraction.text import TfidfVectorizer
|
25 |
-
|
26 |
-
|
27 |
-
# # tokenizer = AutoTokenizer.from_pretrained("tabibu-ai/mental-health-chatbot")
|
28 |
-
|
29 |
-
# # tokenizer = AutoTokenizer.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172")
|
30 |
-
# model = pickle.load(open("model.pkl", "rb"))
|
31 |
-
# vectorizer = pickle.load(open("vectorizer.pkl", "rb"))
|
32 |
-
|
33 |
-
|
34 |
-
# def classify_text(inp):
|
35 |
-
# # input_ids = tokenizer.encode(inp, return_tensors='pt')
|
36 |
-
# # output = model.predict(input_ids)
|
37 |
-
# # return output.logits.argmax().item()
|
38 |
-
# # vectorizer = TfidfVectorizer()
|
39 |
-
# # X = vectorizer.fit_transform(inp)
|
40 |
-
# # reshape the input to 2D
|
41 |
-
# # convert the input to a numpy array
|
42 |
-
# # return model.predict( np.array(inp).reshape(1, -1) )
|
43 |
-
# # dtype='numeric' is not compatible with arrays of bytes/strings.Convert your data to numeric values explicitly instead.
|
44 |
-
|
45 |
-
# # Convert inp to numeric values explicitly instead
|
46 |
-
# new_question_vector = vectorizer.transform([inp])
|
47 |
-
# prediction = model.predict(new_question_vector)
|
48 |
-
# # convert the prediction from a numpy array to a string
|
49 |
-
# return str(prediction[0])
|
50 |
-
|
51 |
-
# # # encode the input text
|
52 |
-
# # encoded_input = tokenizer(text, return_tensors='pt')
|
53 |
-
# # # get the prediction
|
54 |
-
# # output = model(**encoded_input)
|
55 |
-
# # # get the label
|
56 |
-
# # label = output[0].argmax().item()
|
57 |
-
# # # return the label
|
58 |
-
# # return label
|
59 |
-
# iface = gr.Interface(fn=classify_text, inputs="text", outputs="label",
|
60 |
-
# interpretation="default", examples=[
|
61 |
-
# ["I am feeling depressed"],
|
62 |
-
# ["I am feeling anxious"],
|
63 |
-
# ["I am feeling stressed"],
|
64 |
-
# ["I am feeling sad"],
|
65 |
-
# ])
|
66 |
-
# iface.launch()
|
67 |
-
|
68 |
-
# -----------------------------------
|
69 |
-
|
70 |
-
import nltk
|
71 |
-
nltk.download('punkt')
|
72 |
|
73 |
-
import nltk
|
74 |
-
from nltk.stem.lancaster import LancasterStemmer
|
75 |
import numpy as np
|
76 |
-
import tflearn
|
77 |
-
import tensorflow
|
78 |
-
import random
|
79 |
-
import json
|
80 |
-
import pandas as pd
|
81 |
-
import pickle
|
82 |
import gradio as gr
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
with open("intents.json") as file:
|
87 |
-
data = json.load(file)
|
88 |
-
|
89 |
-
with open("data.pickle", "rb") as f:
|
90 |
-
words, labels, training, output = pickle.load(f)
|
91 |
-
|
92 |
-
net = tflearn.input_data(shape=[None, len(training[0])])
|
93 |
-
net = tflearn.fully_connected(net, 8)
|
94 |
-
net = tflearn.fully_connected(net, 8)
|
95 |
-
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
96 |
-
net = tflearn.regression(net)
|
97 |
-
|
98 |
-
model = tflearn.DNN(net)
|
99 |
-
model.load("MentalHealthChatBotmodel.tflearn")
|
100 |
-
# print('model loaded successfully')
|
101 |
-
|
102 |
-
|
103 |
-
def bag_of_words(s, words):
|
104 |
-
bag = [0 for _ in range(len(words))]
|
105 |
-
|
106 |
-
s_words = nltk.word_tokenize(s)
|
107 |
-
s_words = [stemmer.stem(word.lower()) for word in s_words]
|
108 |
-
|
109 |
-
for se in s_words:
|
110 |
-
for i, w in enumerate(words):
|
111 |
-
if w == se:
|
112 |
-
bag[i] = 1
|
113 |
-
|
114 |
-
return np.array(bag)
|
115 |
-
|
116 |
-
|
117 |
-
def chat(message, history):
|
118 |
-
history = history or []
|
119 |
-
message = message.lower()
|
120 |
-
results = model.predict([bag_of_words(message, words)])
|
121 |
-
results_index = np.argmax(results)
|
122 |
-
tag = labels[results_index]
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
responses = tg['responses']
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
history.append((message, response))
|
132 |
-
return history, history
|
133 |
|
134 |
-
chatbot = gr.Chatbot(label="Chat")
|
135 |
-
css = """
|
136 |
|
137 |
-
|
138 |
-
z-index: 14;
|
139 |
-
height: 43px;
|
140 |
-
width: 130px;
|
141 |
-
left: 0px;
|
142 |
-
top: 0px;
|
143 |
-
padding: 0px;
|
144 |
-
cursor: pointer !important;
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
.
|
158 |
-
z-index: 14;
|
159 |
-
height: 43px;
|
160 |
-
width: 130px;
|
161 |
-
left: 0px;
|
162 |
-
top: 0px;
|
163 |
-
padding: 0px;
|
164 |
-
cursor: pointer !important;
|
165 |
-
background: none rgb(37, 56, 133) !important;
|
166 |
-
border: none !important;
|
167 |
-
text-align: center !important;
|
168 |
-
font-family: Poppins !important;
|
169 |
-
font-size: 14px !important;
|
170 |
-
font-weight: 500 !important;
|
171 |
-
color: rgb(255, 255, 255) !important;
|
172 |
-
line-height: 1 !important;
|
173 |
-
border-radius: 12px !important;
|
174 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
175 |
-
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
|
176 |
-
}
|
177 |
-
.hover\:bg-orange-50:hover {
|
178 |
-
--tw-bg-opacity: 1 !important;
|
179 |
-
background-color: rgb(229,225,255) !important;
|
180 |
-
}
|
181 |
-
div[data-testid="user"] {
|
182 |
-
background-color: #253885 !important;
|
183 |
-
}
|
184 |
-
.h-\[40vh\]{
|
185 |
-
height: 70vh !important;
|
186 |
-
}
|
187 |
-
"""
|
188 |
-
demo = gr.Interface(
|
189 |
-
chat,
|
190 |
-
[gr.Textbox(lines=1, label="Message"), "state"],
|
191 |
-
[chatbot, "state"],
|
192 |
-
allow_flagging="never",
|
193 |
-
title="Mental Health Bot | Data Science Dojo",
|
194 |
-
css=css
|
195 |
-
)
|
196 |
-
if __name__ == "__main__":
|
197 |
-
demo.launch()
|
|
|
1 |
+
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# install transformers and torch in requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
10 |
|
11 |
+
model = pickle.load(open("model.pkl", "rb"))
|
12 |
+
vectorizer = pickle.load(open("vectorizer.pkl", "rb"))
|
|
|
|
|
|
|
13 |
|
|
|
|
|
14 |
|
15 |
+
def classify_text(inp):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
new_question_vector = vectorizer.transform([inp])
|
18 |
+
prediction = model.predict(new_question_vector)
|
19 |
+
return str(prediction[0])
|
20 |
+
|
21 |
+
iface = gr.Interface(fn=classify_text, inputs="text", outputs="label",title="Tabibu Bot",
|
22 |
+
interpretation="default", examples=[
|
23 |
+
["I am feeling depressed"],
|
24 |
+
["I am feeling anxious"],
|
25 |
+
["I am feeling stressed"],
|
26 |
+
["I am feeling sad"],
|
27 |
+
])
|
28 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|